Authier Matthieu, Aubry Lise M, Cam Emmanuelle
Observatoire PELAGIS UMS-CNRS 3462 Université de la Rochelle La Rochelle France.
Wildland Resources Department & the Ecology Center Utah State University Logan UT USA.
Ecol Evol. 2017 Apr 4;7(10):3348-3361. doi: 10.1002/ece3.2874. eCollection 2017 May.
Understanding the processes behind change in reproductive state along life-history trajectories is a salient research program in evolutionary ecology. Two processes, state dependence and heterogeneity, can drive the dynamics of change among states. Both processes can operate simultaneously, begging the difficult question of how to tease them apart in practice. The Neutral Theory for Life Histories (NTLH) holds that the bulk of variations in life-history trajectories is due to state dependence and is hence neutral: Once previous (breeding) state is taken into account, variations are mostly random. Lifetime reproductive success (LRS), the number of descendants produced over an individual's reproductive life span, has been used to infer support for NTLH in natura. Support stemmed from accurate prediction of the population-level distribution of LRS with parameters estimated from a state dependence model. We show with Monte Carlo simulations that the current reliance of NTLH on LRS prediction in a null hypothesis framework easily leads to selecting a misspecified model, biased estimates and flawed inferences. Support for the NTLH can be spurious because of a systematic positive bias in estimated state dependence when heterogeneity is present in the data but ignored in the analysis. This bias can lead to spurious positive covariance between fitness components when there is in fact an underlying trade-off. Furthermore, neutrality implied by NTLH needs a clarification because of a probable disjunction between its common understanding by evolutionary ecologists and its translation into statistical models of life-history trajectories. Irrespective of what neutrality entails, testing hypotheses about the dynamics of change among states in life histories requires a multimodel framework because state dependence and heterogeneity can easily be mistaken for each other.
理解沿着生活史轨迹的生殖状态变化背后的过程是进化生态学中一个突出的研究项目。状态依赖和异质性这两个过程可以驱动状态之间的变化动态。这两个过程可以同时起作用,这就引出了一个难题,即在实践中如何将它们区分开来。生活史中性理论(NTLH)认为,生活史轨迹的大部分变化是由于状态依赖,因此是中性的:一旦考虑到先前的(繁殖)状态,变化大多是随机的。终身繁殖成功率(LRS),即个体在其生殖寿命期间产生的后代数量,已被用于推断自然状态下对NTLH的支持。支持源于用从状态依赖模型估计的参数对LRS的种群水平分布进行准确预测。我们通过蒙特卡罗模拟表明,NTLH目前在零假设框架中对LRS预测的依赖很容易导致选择一个错误设定的模型、有偏差的估计和有缺陷的推断。对NTLH的支持可能是虚假的,因为当数据中存在异质性但在分析中被忽略时,估计的状态依赖存在系统性的正偏差。当实际上存在潜在的权衡时,这种偏差可能导致适合度成分之间出现虚假的正协方差。此外,由于进化生态学家对NTLH的普遍理解与其转化为生活史轨迹的统计模型之间可能存在脱节,因此需要对NTLH所隐含的中性进行澄清。无论中性意味着什么,检验关于生活史中状态之间变化动态的假设都需要一个多模型框架,因为状态依赖和异质性很容易相互混淆。