He Zhi-Yao, Men Ke, Qin Zhou, Yang Yang, Xu Ting, Wei Yu-Quan
Department of Pharmacy, and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
Sci China Life Sci. 2017 May;60(5):458-467. doi: 10.1007/s11427-017-9033-0. Epub 2017 May 2.
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a specific gene. Some CRISPR-Cas9 systems from different bacteria or artificial variants have been discovered or constructed by biologists, and Cas9 nucleases and single guide RNAs (sgRNA) are the major components of the CRISPR-Cas9 system. These Cas9 systems have been extensively applied for identifying therapeutic targets, identifying gene functions, generating animal models, and developing gene therapies. Moreover, CRISPR-Cas9 systems have been used to partially or completely alleviate disease symptoms by mutating or correcting related genes. However, the efficient transfer of CRISPR-Cas9 system into cells and target organs remains a challenge that affects the robust and precise genome editing activity. The current review focuses on delivery systems for Cas9 mRNA, Cas9 protein, or vectors encoding the Cas9 gene and corresponding sgRNA. Non-viral delivery of Cas9 appears to help Cas9 maintain its on-target effect and reduce off-target effects, and viral vectors for sgRNA and donor template can improve the efficacy of genome editing and homology-directed repair. Safe, efficient, and producible delivery systems will promote the application of CRISPR-Cas9 technology in human gene therapy.
成簇规律间隔短回文重复序列(CRISPR)相关蛋白9(CRISPR - Cas9)系统提供了一种新型基因组编辑技术,该技术可精确靶向基因组位点以破坏或修复特定基因。生物学家已经发现或构建了一些来自不同细菌的CRISPR - Cas9系统或人工变体,Cas9核酸酶和单向导RNA(sgRNA)是CRISPR - Cas9系统的主要组成部分。这些Cas9系统已广泛应用于识别治疗靶点、鉴定基因功能、生成动物模型以及开发基因疗法。此外,CRISPR - Cas9系统已被用于通过突变或校正相关基因来部分或完全缓解疾病症状。然而,将CRISPR - Cas9系统有效导入细胞和靶器官仍然是一个挑战,这影响了强大而精确的基因组编辑活性。本综述重点关注Cas9 mRNA、Cas9蛋白或编码Cas9基因及相应sgRNA的载体的递送系统。Cas9的非病毒递送似乎有助于Cas9维持其靶向效应并减少脱靶效应,用于sgRNA和供体模板的病毒载体可提高基因组编辑和同源定向修复的效率。安全、高效且可生产的递送系统将促进CRISPR - Cas9技术在人类基因治疗中的应用。