Nimpf Simon, Keays David A
Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
EMBO J. 2017 Jun 14;36(12):1643-1646. doi: 10.15252/embj.201797177. Epub 2017 May 23.
Optogenetics has revolutionised neuroscience as it enables investigators to establish causal relationships between neuronal activity and a behavioural outcome in a temporally precise manner. It is a powerful technology, but limited by the necessity to deliver light to the cells of interest, which often requires invasive surgery and a tethered light source. Magnetogenetics aims to overcome these issues by manipulating neurons with magnetic stimuli. As magnetic fields can pass freely through organic tissue, it requires no surgery or tethering the animals to an energy source. In this commentary, we assess the utility of magnetogenetics based on three different approaches: magneto‐thermo‐genetics; force/torque‐based methods; and expression of the iron chaperone ISCA1. Despite some progress, many hurdles need to be overcome if magnetogenetics is to take the helm from optogenetics.
光遗传学彻底改变了神经科学,因为它使研究人员能够以时间精确的方式建立神经元活动与行为结果之间的因果关系。这是一项强大的技术,但受到向感兴趣的细胞传递光的必要性的限制,这通常需要侵入性手术和连接光源。磁遗传学旨在通过用磁刺激操纵神经元来克服这些问题。由于磁场可以自由穿过有机组织,因此无需手术或将动物连接到能源上。在这篇评论中,我们基于三种不同的方法评估磁遗传学的效用:磁热遗传学;基于力/扭矩的方法;以及铁伴侣蛋白ISCA1的表达。尽管取得了一些进展,但如果磁遗传学要从光遗传学手中接过主导地位,仍有许多障碍需要克服。