Suppr超能文献

利用工程化藻酸盐-GelMA 水凝胶调控牙源性间充质干细胞的命运。

Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels.

机构信息

Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California.

Parker H. Petit Institute for Bioengineering and Bioscience, G. W. Woodruff School of Mechanical Engineering and School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia.

出版信息

J Biomed Mater Res A. 2017 Nov;105(11):2957-2967. doi: 10.1002/jbm.a.36148. Epub 2017 Jul 14.

Abstract

Mesenchymal stem cells (MSCs) derived from dental and orofacial tissues provide an alternative therapeutic option for craniofacial bone tissue regeneration. However, there is still a need to improve stem cell delivery vehicles to regulate the fate of the encapsulated MSCs for high quality tissue regeneration. Matrix elasticity plays a vital role in MSC fate determination. Here, we have prepared various hydrogel formulations based on alginate and gelatin methacryloyl (GelMA) and have encapsulated gingival mesenchymal stem cells (GMSCs) and human bone marrow MSCs (hBMMSCs) within these fabricated hydrogels. We demonstrate that addition of the GelMA to alginate hydrogel reduces the elasticity of the hydrogel mixture. While presence of GelMA in an alginate-based scaffold significantly increased the viability of encapsulated MSCs, increasing the concentration of GelMA downregulated the osteogenic differentiation of encapsulated MSCs in vitro due to decrease in the stiffness of the hydrogel matrix. The osteogenic suppression was rescued by addition of a potent osteogenic growth factor such as rh-BMP-2. In contrast, MSCs encapsulated in alginate hydrogel without GelMA were successfully osteo-differentiated without the aid of additional growth factors, as confirmed by expression of osteogenic markers (Runx2 and OCN), as well as positive staining using Xylenol orange. Interestingly, after two weeks of osteo-differentiation, hBMMSCs and GMSCs encapsulated in alginate/GelMA hydrogels still expressed CD146, an MSC surface marker, while MSCs encapsulated in alginate hydrogel failed to express any positive staining. Altogether, our findings suggest that it is possible to control the fate of encapsulated MSCs within hydrogels by tuning the mechanical properties of the matrix. We also reconfirmed the important role of the presence of inductive signals in guiding MSC differentiation. These findings may enable the design of new multifunctional scaffolds for spatial and temporal control over the fate and function of stem cells even post-transplantation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2957-2967, 2017.

摘要

间充质干细胞(MSCs)来源于口腔组织,为颅面骨组织再生提供了一种替代的治疗选择。然而,仍然需要改进干细胞输送载体来调节封装的 MSCs 的命运,以实现高质量的组织再生。基质弹性在 MSC 命运决定中起着至关重要的作用。在这里,我们基于藻酸盐和明胶甲基丙烯酰(GelMA)制备了各种水凝胶配方,并将牙龈间充质干细胞(GMSCs)和人骨髓间充质干细胞(hBMMSCs)封装在这些制备的水凝胶中。我们证明,在藻酸盐水凝胶中添加 GelMA 会降低水凝胶混合物的弹性。而在藻酸盐支架中存在 GelMA 显著增加了封装 MSCs 的活力,随着 GelMA 浓度的增加,由于水凝胶基质的刚度降低,体外封装的 MSCs 的成骨分化能力下降。通过添加一种有效的成骨生长因子(如 rh-BMP-2)来挽救成骨抑制作用。相比之下,没有添加 GelMA 的藻酸盐水凝胶中封装的 MSCs 可以在没有额外生长因子的帮助下成功成骨分化,这一点可以通过表达成骨标志物(Runx2 和 OCN)以及使用二甲苯酚橙的阳性染色来证实。有趣的是,在成骨分化两周后,在藻酸盐/GelMA 水凝胶中封装的 hBMMSCs 和 GMSCs 仍然表达 MSC 表面标志物 CD146,而在藻酸盐水凝胶中封装的 MSCs 则未能表达任何阳性染色。总的来说,我们的研究结果表明,可以通过调节基质的机械性能来控制封装在水凝胶中的 MSCs 的命运。我们还再次证实了诱导信号的存在在指导 MSC 分化中的重要作用。这些发现可能使我们能够设计新的多功能支架,以实现对干细胞命运和功能的空间和时间控制,甚至在移植后也是如此。© 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A:105A:2957-2967,2017。

相似文献

1
Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels.
J Biomed Mater Res A. 2017 Nov;105(11):2957-2967. doi: 10.1002/jbm.a.36148. Epub 2017 Jul 14.
2
4
Hydrogel elasticity and microarchitecture regulate dental-derived mesenchymal stem cell-host immune system cross-talk.
Acta Biomater. 2017 Sep 15;60:181-189. doi: 10.1016/j.actbio.2017.07.017. Epub 2017 Jul 12.
5
Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study.
J Mater Sci Mater Med. 2012 Dec;23(12):3041-51. doi: 10.1007/s10856-012-4759-3. Epub 2012 Sep 4.
6
Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
J Biomed Mater Res A. 2017 Dec;105(12):3231-3241. doi: 10.1002/jbm.a.36179. Epub 2017 Aug 22.
7
Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration.
Acta Biomater. 2013 Dec;9(12):9343-50. doi: 10.1016/j.actbio.2013.07.023. Epub 2013 Jul 26.
10
Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration.
J Biomed Mater Res A. 2018 Jan;106(1):201-209. doi: 10.1002/jbm.a.36226. Epub 2017 Sep 28.

引用本文的文献

2
Gelatin methacryloyl advances in regenerative dentistry: A global bibliometric analysis.
J Clin Exp Dent. 2025 Jun 1;17(6):e732-e741. doi: 10.4317/jced.62741. eCollection 2025 Jun.
3
State of the Art of Bioengineering Approaches in Beta-Cell Replacement.
Curr Transplant Rep. 2025;12(1):17. doi: 10.1007/s40472-025-00470-y. Epub 2025 May 6.
4
Optimization of 3D Extrusion-Printed Particle-Containing Hydrogels for Osteogenic Differentiation.
ACS Omega. 2025 Apr 10;10(15):15036-15051. doi: 10.1021/acsomega.4c10515. eCollection 2025 Apr 22.
8
Application of hydrogel-loaded dental stem cells in the field of tissue regeneration.
Hum Cell. 2024 Oct 22;38(1):2. doi: 10.1007/s13577-024-01134-2.

本文引用的文献

1
GelMA-Encapsulated hDPSCs and HUVECs for Dental Pulp Regeneration.
J Dent Res. 2017 Feb;96(2):192-199. doi: 10.1177/0022034516682005. Epub 2016 Dec 15.
2
Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing.
Acta Biomater. 2017 Feb;49:66-77. doi: 10.1016/j.actbio.2016.11.017. Epub 2016 Nov 5.
4
Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration.
Biomaterials. 2014 Mar;35(9):2642-50. doi: 10.1016/j.biomaterials.2013.12.053. Epub 2014 Jan 4.
5
Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs.
Biomacromolecules. 2014 Jan 13;15(1):283-90. doi: 10.1021/bm401533y. Epub 2014 Jan 2.
8
Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration.
Acta Biomater. 2013 Dec;9(12):9343-50. doi: 10.1016/j.actbio.2013.07.023. Epub 2013 Jul 26.
9
Gingivae contain neural-crest- and mesoderm-derived mesenchymal stem cells.
J Dent Res. 2013 Sep;92(9):825-32. doi: 10.1177/0022034513497961. Epub 2013 Jul 18.
10
WITHDRAWN: Silk fibroin films are a bio-active interface for neuroregenerative medicine.
J Appl Biomater Funct Mater. 2012 Dec 20:315-323. doi: 10.5301/JABFM.2012.10448.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验