Suppr超能文献

随着输送到人类视觉皮层的电流水平增加,光幻视大小的饱和度

Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.

作者信息

Bosking William H, Sun Ping, Ozker Muge, Pei Xiaomei, Foster Brett L, Beauchamp Michael S, Yoshor Daniel

机构信息

Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030,

Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030.

出版信息

J Neurosci. 2017 Jul 26;37(30):7188-7197. doi: 10.1523/JNEUROSCI.2896-16.2017. Epub 2017 Jun 26.

Abstract

Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices. Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by electrical stimulation: phosphene size saturates at a relatively low current level. This finding implies that, with current methods, visual prosthetics will have a limited dynamic range available to control the production of spatial forms and that more advanced stimulation methods may be required.

摘要

电刺激早期视觉皮层会产生一种被称为光幻视的视觉感知。尽管各种电极尺寸和电流幅度都能诱发光幻视,但它们无一例外都被描述为小。为了更好地理解这一现象,我们对13名人类受试者视觉皮层中植入的93个电极进行了电刺激,这些受试者在刺激电流变化时报告了光幻视的大小。随着刺激电流最初升至阈值以上,光幻视大小增加,但随后迅速达到饱和。光幻视大小还取决于受刺激部位的位置,其大小随着与中央凹表征距离的增加而增大。我们建立了一个将光幻视大小与激活皮层的数量及其在视网膜拓扑图中的位置相关联的模型。首先,使用一条S形曲线来预测给定电流下激活皮层的数量。其次,通过乘以该视网膜拓扑位置的反皮层放大因子,将活跃皮层的数量转换为视角度数。这个简单的模型准确地预测了广泛的刺激电流和皮层位置下的光幻视大小。光幻视大小意外的饱和表明,大脑皮层的功能结构可能对人工诱发活动的传播施加了基本限制,这可能是皮层假体装置设计中的一个重要考虑因素。理解光幻视(由视觉皮层电刺激产生的视觉感知)的神经基础,对于视觉皮层假体的发展至关重要。我们在视觉皮层上植入电极的人类受试者身上进行的实验表明,是分布在几毫米组织上的大量细胞的活动支持了光幻视的感知。此外,我们描述了电刺激产生光幻视的一个重要特征:光幻视大小在相对较低的电流水平下达到饱和。这一发现意味着,就目前的方法而言,视觉假体在控制空间形式产生方面可用的动态范围有限,可能需要更先进的刺激方法。

相似文献

1
Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
J Neurosci. 2017 Jul 26;37(30):7188-7197. doi: 10.1523/JNEUROSCI.2896-16.2017. Epub 2017 Jun 26.
2
Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics.
Annu Rev Vis Sci. 2017 Sep 15;3:141-166. doi: 10.1146/annurev-vision-111815-114525. Epub 2017 Jul 28.
3
Phosphene induction by microstimulation of macaque V1.
Brain Res Rev. 2007 Feb;53(2):337-43. doi: 10.1016/j.brainresrev.2006.11.001. Epub 2006 Dec 14.
5
Multi-electrode stimulation evokes consistent spatial patterns of phosphenes and improves phosphene mapping in blind subjects.
Brain Stimul. 2021 Sep-Oct;14(5):1356-1372. doi: 10.1016/j.brs.2021.08.024. Epub 2021 Sep 2.
6
The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation.
Clin Neurophysiol. 2001 Nov;112(11):2015-21. doi: 10.1016/s1388-2457(01)00673-3.
7
Mapping the representation of the visual field by electrical stimulation of human visual cortex.
Am J Ophthalmol. 1979 Oct;88(4):727-35. doi: 10.1016/0002-9394(79)90673-1.
8
Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats.
J Neural Eng. 2013 Jun;10(3):036022. doi: 10.1088/1741-2560/10/3/036022. Epub 2013 May 13.
9
Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex.
J Neurosci. 2017 Mar 15;37(11):2824-2833. doi: 10.1523/JNEUROSCI.3413-16.2017. Epub 2017 Feb 8.

引用本文的文献

2
Building egocentric models of local space from retinal input.
Curr Biol. 2024 Dec 2;34(23):R1185-R1202. doi: 10.1016/j.cub.2024.10.057.
4
Improving Understanding of Visual Snow by Quantifying its Appearance and Effect on Vision.
Invest Ophthalmol Vis Sci. 2024 May 1;65(5):38. doi: 10.1167/iovs.65.5.38.
6
A novel simulation paradigm utilising MRI-derived phosphene maps for cortical prosthetic vision.
J Neural Eng. 2023 Aug 10;20(4):046027. doi: 10.1088/1741-2552/aceca2.
7
Tessellation of artificial touch via microstimulation of human somatosensory cortex.
bioRxiv. 2023 Jul 15:2023.06.23.545425. doi: 10.1101/2023.06.23.545425.
8
Chronic stability of a neuroprosthesis comprising multiple adjacent Utah arrays in monkeys.
J Neural Eng. 2023 Jun 30;20(3):036039. doi: 10.1088/1741-2552/ace07e.
9
Towards a: AI-powered artificial vision for the treatment of incurable blindness.
J Neural Eng. 2022 Dec 7;19(6). doi: 10.1088/1741-2552/aca69d.
10
Bioelectronic medicine: Preclinical insights and clinical advances.
Neuron. 2022 Nov 2;110(21):3627-3644. doi: 10.1016/j.neuron.2022.09.003. Epub 2022 Sep 28.

本文引用的文献

2
Restoration of vision using wireless cortical implants: The Monash Vision Group project.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1041-4. doi: 10.1109/EMBC.2015.7318543.
3
Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective.
Brain Res. 2016 Jan 1;1630:208-24. doi: 10.1016/j.brainres.2015.08.038. Epub 2015 Sep 5.
4
Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses.
Brain Res. 2015 Jan 21;1595:51-73. doi: 10.1016/j.brainres.2014.11.020. Epub 2014 Nov 15.
5
Optical imaging of cortical networks via intracortical microstimulation.
J Neurophysiol. 2013 Dec;110(11):2670-8. doi: 10.1152/jn.00879.2012. Epub 2013 Sep 11.
6
Artificial vision through neuronal stimulation.
Neurosci Lett. 2012 Jun 25;519(2):122-8. doi: 10.1016/j.neulet.2012.01.063. Epub 2012 Feb 3.
7
New methods devised specify the size and color of the spots monkeys see when striate cortex (area V1) is electrically stimulated.
Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17809-14. doi: 10.1073/pnas.1108337108. Epub 2011 Oct 10.
9
The effects of electrical microstimulation on cortical signal propagation.
Nat Neurosci. 2010 Oct;13(10):1283-91. doi: 10.1038/nn.2631. Epub 2010 Sep 5.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验