Sorenson Kyle S, Mahaney Brandi L, Lees-Miller Susan P, Cobb Jennifer A
From the Departments of Biochemistry and Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N. W., Calgary, Alberta T2N 4N1, Canada.
J Biol Chem. 2017 Sep 1;292(35):14576-14586. doi: 10.1074/jbc.M117.796011. Epub 2017 Jul 5.
Double strand breaks (DSBs) represent highly deleterious DNA damage and need to be accurately repaired. Homology-directed repair and non-homologous end joining (NHEJ) are the two major DSB repair pathways that are highly conserved from yeast to mammals. The choice between these pathways is largely based on 5' to 3' DNA resection, and NHEJ proceeds only if resection has not been initiated. In yeast, yKu70/80 rapidly localizes to the break, protecting DNA ends from nuclease accessibility, and recruits additional NHEJ factors, including Nej1 and Lif1. Cells harboring the -V338A mutant exhibit NHEJ-mediated repair deficiencies and hyper-resection 0.15 kb from the DSB that was dependent on the nuclease activity of Dna2-Sgs1. The integrity of Nej1 is also important for inhibiting long-range resection, 4.8 kb from the break, and for preventing the formation of large genomic deletions at sizes >700 bp around the break. Nej1 localized to a DSB similarly to WT Nej1, indicating that the Nej1-Lif1 interaction becomes critical for blocking hyper-resection mainly after their recruitment to the DSB. This work highlights that Nej1 inhibits 5' DNA hyper-resection mediated by Dna2-Sgs1, a function distinct from its previously reported role in supporting Dnl4 ligase activity, and has implications for repair pathway choice and resection regulation upon DSB formation.
双链断裂(DSBs)代表高度有害的DNA损伤,需要精确修复。同源定向修复和非同源末端连接(NHEJ)是从酵母到哺乳动物高度保守的两种主要DSB修复途径。这些途径之间的选择很大程度上基于5'到3'的DNA切除,并且只有在未启动切除时NHEJ才会进行。在酵母中,yKu70/80迅速定位于断裂处,保护DNA末端不被核酸酶接近,并招募其他NHEJ因子,包括Nej1和Lif1。携带-V338A突变体的细胞表现出NHEJ介导的修复缺陷以及从DSB处0.15 kb的过度切除,这依赖于Dna2-Sgs1的核酸酶活性。Nej1的完整性对于抑制距断裂处4.8 kb的长距离切除以及防止在断裂处周围形成大于700 bp的大基因组缺失也很重要。Nej1与野生型Nej1类似地定位于DSB,这表明Nej1-Lif1相互作用主要在它们被招募到DSB后对于阻止过度切除变得至关重要。这项工作突出了Nej1抑制由Dna2-Sgs1介导的5' DNA过度切除,这一功能与其先前报道的支持Dnl4连接酶活性的作用不同,并且对DSB形成时的修复途径选择和切除调节具有影响。