Suppr超能文献

癌症治疗中耐药性的演变和生态

The Evolution and Ecology of Resistance in Cancer Therapy.

机构信息

Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, Florida 33612.

出版信息

Cold Spring Harb Perspect Med. 2018 Mar 1;8(3):a033415. doi: 10.1101/cshperspect.a033415.

Abstract

Despite continuous deployment of new treatment strategies and agents over many decades, most disseminated cancers remain fatal. Cancer cells, through their access to the vast information of human genome, have a remarkable capacity to deploy adaptive strategies for even the most effective treatments. We note there are two critical steps in the clinical manifestation of treatment resistance. The first, which is widely investigated, requires deployment of a mechanism of resistance that usually involves increased expression of molecular machinery necessary to eliminate the cytotoxic effect of treatment. However, the emergence of a resistant phenotype is not in itself clinically significant. That is, resistant cells affect patient outcomes only when they form a sufficiently large population to allow tumor progression and treatment failure. Importantly, proliferation of the resistant phenotype is by no means certain and, in fact, depends on complex Darwinian dynamics governed by the costs and benefits of the resistance mechanisms in the context of the local environment and competing populations. Attempts to target molecular machinery of resistance have had little clinical success largely because of the diversity within the human genome-therapeutic interruption of one mechanism simply results in its replacement by an alternative. We explore an alternative strategy for overcoming treatment resistance that seeks to understand and exploit the critical evolutionary dynamics that govern proliferation of the resistant phenotypes. In general, this approach has shown that, although emergence of resistance mechanisms in cancer cells to every current therapy is inevitable, proliferation of the resistant phenotypes is not and can be delayed and even prevented with sufficient understanding of the underlying ecoevolutionary dynamics.

摘要

尽管几十年来不断部署新的治疗策略和药物,但大多数转移性癌症仍然是致命的。癌细胞通过获取人类基因组的大量信息,具有显著的能力来部署适应性策略,即使是最有效的治疗方法也不例外。我们注意到,治疗耐药性的临床表现有两个关键步骤。第一步是广泛研究的,需要部署一种耐药机制,通常涉及增加消除治疗细胞毒性作用所需的分子机制的表达。然而,耐药表型的出现本身在临床上并不重要。也就是说,只有当耐药细胞形成足够大的群体,允许肿瘤进展和治疗失败时,它们才会影响患者的预后。重要的是,耐药表型的增殖并非必然,事实上,这取决于耐药机制在局部环境和竞争群体中的成本和收益所决定的复杂达尔文动力学。靶向耐药性分子机制的尝试在临床上几乎没有取得成功,主要是因为人类基因组的多样性——治疗中断一种机制只会导致其被另一种机制所取代。我们探索了一种克服治疗耐药性的替代策略,旨在理解和利用控制耐药表型增殖的关键进化动态。一般来说,这种方法表明,尽管癌症细胞对每一种现有治疗方法产生耐药机制是不可避免的,但耐药表型的增殖并非不可避免,并且可以通过充分了解潜在的生态进化动态来延迟甚至预防。

相似文献

1
The Evolution and Ecology of Resistance in Cancer Therapy.
Cold Spring Harb Perspect Med. 2018 Mar 1;8(3):a033415. doi: 10.1101/cshperspect.a033415.
2
The Evolution and Ecology of Resistance in Cancer Therapy.
Cold Spring Harb Perspect Med. 2020 Nov 2;10(11):a040972. doi: 10.1101/cshperspect.a040972.
3
Integrating evolutionary dynamics into cancer therapy.
Nat Rev Clin Oncol. 2020 Nov;17(11):675-686. doi: 10.1038/s41571-020-0411-1. Epub 2020 Jul 22.
4
Optimizing Cancer Treatment Using Game Theory: A Review.
JAMA Oncol. 2019 Jan 1;5(1):96-103. doi: 10.1001/jamaoncol.2018.3395.
5
Quantitative Clinical Imaging Methods for Monitoring Intratumoral Evolution.
Methods Mol Biol. 2017;1513:61-81. doi: 10.1007/978-1-4939-6539-7_6.
6
Spatial Heterogeneity and Evolutionary Dynamics Modulate Time to Recurrence in Continuous and Adaptive Cancer Therapies.
Cancer Res. 2018 Apr 15;78(8):2127-2139. doi: 10.1158/0008-5472.CAN-17-2649. Epub 2018 Jan 30.
7
Adaptive therapy.
Cancer Res. 2009 Jun 1;69(11):4894-903. doi: 10.1158/0008-5472.CAN-08-3658.
9
Mechanisms of acquired tumor drug resistance.
Biochim Biophys Acta Rev Cancer. 2019 Dec;1872(2):188310. doi: 10.1016/j.bbcan.2019.188310. Epub 2019 Aug 20.

引用本文的文献

1
Estimating treatment sensitivity in synthetic and in vitro tumors using a random differential equation model.
NPJ Syst Biol Appl. 2025 May 23;11(1):54. doi: 10.1038/s41540-025-00530-0.
3
Modeling phenotypic heterogeneity towards evolutionarily inspired osteosarcoma therapy.
Sci Rep. 2023 Nov 17;13(1):20125. doi: 10.1038/s41598-023-47412-1.
4
Hyperthermia Influences the Secretion Signature of Tumor Cells and Affects Endothelial Cell Sprouting.
Biomedicines. 2023 Aug 12;11(8):2256. doi: 10.3390/biomedicines11082256.
5
BSA modification of bacterial surface: a promising anti-cancer therapeutic strategy.
BMC Microbiol. 2023 Apr 17;23(1):105. doi: 10.1186/s12866-023-02830-z.
6
Evolution-Informed Strategies for Combating Drug Resistance in Cancer.
Int J Mol Sci. 2023 Apr 4;24(7):6738. doi: 10.3390/ijms24076738.
7
Modeling cancer's ecological and evolutionary dynamics.
Med Oncol. 2023 Feb 28;40(4):109. doi: 10.1007/s12032-023-01968-0.
8
Nano-Clays for Cancer Therapy: State-of-the Art and Future Perspectives.
J Pers Med. 2022 Oct 19;12(10):1736. doi: 10.3390/jpm12101736.
9
10
Phytotherapy in Integrative Oncology-An Update of Promising Treatment Options.
Molecules. 2022 May 17;27(10):3209. doi: 10.3390/molecules27103209.

本文引用的文献

1
Darwinian Dynamics of Intratumoral Heterogeneity: Not Solely Random Mutations but Also Variable Environmental Selection Forces.
Cancer Res. 2016 Jun 1;76(11):3136-44. doi: 10.1158/0008-5472.CAN-15-2962. Epub 2016 Mar 23.
2
Using a sequential regimen to eliminate bacteria at sublethal antibiotic dosages.
PLoS Biol. 2015 Apr 8;13(4):e1002104. doi: 10.1371/journal.pbio.1002104. eCollection 2015 Apr.
3
Metronomic chemotherapy from rationale to clinical studies: a dream or reality?
Crit Rev Oncol Hematol. 2015 Jul;95(1):46-61. doi: 10.1016/j.critrevonc.2015.01.008. Epub 2015 Jan 20.
4
Opinion: Control vs. eradication: applying infectious disease treatment strategies to cancer.
Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):937-8. doi: 10.1073/pnas.1420297111.
6
Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy.
Pharmacol Ther. 2015 May;149:1-123. doi: 10.1016/j.pharmthera.2014.11.013. Epub 2014 Nov 27.
7
Sweat but no gain: inhibiting proliferation of multidrug resistant cancer cells with "ersatzdroges".
Int J Cancer. 2015 Feb 15;136(4):E188-96. doi: 10.1002/ijc.29158. Epub 2014 Sep 2.
8
Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance.
Mol Cell. 2014 Jun 5;54(5):716-27. doi: 10.1016/j.molcel.2014.05.015.
9
Herbicide resistance modelling: past, present and future.
Pest Manag Sci. 2014 Sep;70(9):1394-404. doi: 10.1002/ps.3773. Epub 2014 Apr 28.
10
Quantitative imaging in cancer evolution and ecology.
Radiology. 2013 Oct;269(1):8-15. doi: 10.1148/radiol.13122697.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验