Suppr超能文献

脯氨酸利用A(PutA)的结构、功能及作用机制。

Structure, function, and mechanism of proline utilization A (PutA).

作者信息

Liu Li-Kai, Becker Donald F, Tanner John J

机构信息

Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States.

Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, United States.

出版信息

Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.

Abstract

Proline has important roles in multiple biological processes such as cellular bioenergetics, cell growth, oxidative and osmotic stress response, protein folding and stability, and redox signaling. The proline catabolic pathway, which forms glutamate, enables organisms to utilize proline as a carbon, nitrogen, and energy source. FAD-dependent proline dehydrogenase (PRODH) and NAD-dependent glutamate semialdehyde dehydrogenase (GSALDH) convert proline to glutamate in two sequential oxidative steps. Depletion of PRODH and GSALDH in humans leads to hyperprolinemia, which is associated with mental disorders such as schizophrenia. Also, some pathogens require proline catabolism for virulence. A unique aspect of proline catabolism is the multifunctional proline utilization A (PutA) enzyme found in Gram-negative bacteria. PutA is a large (>1000 residues) bifunctional enzyme that combines PRODH and GSALDH activities into one polypeptide chain. In addition, some PutAs function as a DNA-binding transcriptional repressor of proline utilization genes. This review describes several attributes of PutA that make it a remarkable flavoenzyme: (1) diversity of oligomeric state and quaternary structure; (2) substrate channeling and enzyme hysteresis; (3) DNA-binding activity and transcriptional repressor function; and (4) flavin redox dependent changes in subcellular location and function in response to proline (functional switching).

摘要

脯氨酸在多种生物学过程中发挥着重要作用,如细胞生物能量学、细胞生长、氧化应激和渗透应激反应、蛋白质折叠与稳定性以及氧化还原信号传导等。脯氨酸分解代谢途径可生成谷氨酸,使生物体能够将脯氨酸用作碳源、氮源和能源。依赖黄素腺嘌呤二核苷酸(FAD)的脯氨酸脱氢酶(PRODH)和依赖烟酰胺腺嘌呤二核苷酸(NAD)的谷氨酸半醛脱氢酶(GSALDH)通过两个连续的氧化步骤将脯氨酸转化为谷氨酸。人类体内PRODH和GSALDH的缺失会导致高脯氨酸血症,这与精神分裂症等精神障碍有关。此外,一些病原体的毒力需要脯氨酸分解代谢。脯氨酸分解代谢的一个独特之处在于革兰氏阴性菌中发现的多功能脯氨酸利用A(PutA)酶。PutA是一种大型(>1000个残基)双功能酶,它将PRODH和GSALDH的活性结合在一条多肽链中。此外,一些PutA还作为脯氨酸利用基因的DNA结合转录阻遏物发挥作用。本综述描述了PutA作为一种卓越的黄素酶的几个特性:(1)寡聚状态和四级结构的多样性;(2)底物通道化和酶滞后现象;(3)DNA结合活性和转录阻遏功能;以及(4)黄素氧化还原依赖性的亚细胞定位变化和对脯氨酸的功能响应(功能转换)。

相似文献

1
Structure, function, and mechanism of proline utilization A (PutA).
Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.
6
Substrate channeling in proline metabolism.
Front Biosci (Landmark Ed). 2012 Jan 1;17(1):375-88. doi: 10.2741/3932.
7
Structural Biology of Proline Catabolic Enzymes.
Antioxid Redox Signal. 2019 Feb 1;30(4):650-673. doi: 10.1089/ars.2017.7374. Epub 2017 Nov 13.
8
Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
Arch Biochem Biophys. 2021 Nov 15;712:109025. doi: 10.1016/j.abb.2021.109025. Epub 2021 Sep 15.
9
Unique structural features and sequence motifs of proline utilization A (PutA).
Front Biosci (Landmark Ed). 2012 Jan 1;17(2):556-68. doi: 10.2741/3943.
10
Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.
Biochemistry. 2012 Jan 10;51(1):511-20. doi: 10.1021/bi201603f. Epub 2011 Dec 15.

引用本文的文献

1
Transcriptional reprogramming of Novacetimonas hansenii SI1 during growth on glycerol.
Appl Microbiol Biotechnol. 2025 Sep 2;109(1):194. doi: 10.1007/s00253-025-13583-2.
3
Time-Dependent Kinetic Complexities in Enzyme Assays: A Review.
Biomolecules. 2025 Apr 30;15(5):641. doi: 10.3390/biom15050641.
5
The aldehyde dehydrogenase superfamilies: correlations and deviations in structure and function.
Appl Microbiol Biotechnol. 2025 Apr 29;109(1):106. doi: 10.1007/s00253-025-13467-5.
6
Single amino acid exchanges affect the substrate preference of an acetaldehyde dehydrogenase.
Appl Microbiol Biotechnol. 2025 Apr 25;109(1):103. doi: 10.1007/s00253-025-13468-4.
9
Integrating genomic evidence for an updated taxonomy of the bacterial genus Spiribacter.
Sci Rep. 2024 Dec 3;14(1):30057. doi: 10.1038/s41598-024-80127-5.

本文引用的文献

1
Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.
FEBS J. 2017 Sep;284(18):3029-3049. doi: 10.1111/febs.14165. Epub 2017 Aug 1.
4
Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1.
J Biol Chem. 2017 Apr 28;292(17):7233-7243. doi: 10.1074/jbc.M117.780288. Epub 2017 Mar 3.
5
Hyperprolinemia as a clue in the diagnosis of a patient with psychiatric manifestations.
Brain Dev. 2017 Jun;39(6):539-541. doi: 10.1016/j.braindev.2017.01.008. Epub 2017 Feb 13.
6
A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea.
Nucleic Acids Res. 2017 Apr 20;45(7):3785-3799. doi: 10.1093/nar/gkw1331.
8
Cytosolic Accumulation of L-Proline Disrupts GABA-Ergic Transmission through GAD Blockade.
Cell Rep. 2016 Oct 4;17(2):570-582. doi: 10.1016/j.celrep.2016.09.029.
10
Structural insights into the synthesis of FMN in prokaryotic organisms.
Acta Crystallogr D Biol Crystallogr. 2015 Dec 1;71(Pt 12):2526-42. doi: 10.1107/S1399004715019641. Epub 2015 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验