Falghoush Azeza, Beyenal Haluk, Besser Thomas E, Omsland Anders, Call Douglas R
Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA.
Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA.
Appl Environ Microbiol. 2017 Sep 15;83(19). doi: 10.1128/AEM.01297-17. Print 2017 Oct 1.
Biofilm-associated infections are a clinical challenge, in part because a hydrated matrix protects the bacterial community from antibiotics. Herein, we evaluated how different osmotic compounds (maltodextrin, sucrose, and polyethylene glycol [PEG]) enhance antibiotic efficacy against biofilm communities. Established (24-h) test tube biofilms (strain ATCC 17978) were treated with osmotic compounds in the presence or absence of 10× the MIC of different antibiotics (50 μg/ml tobramycin, 20 μg/ml ciprofloxacin, 300 μg/ml chloramphenicol, 30 μg/ml nalidixic acid, or 100 μg/ml erythromycin). Combining antibiotics with hypertonic concentrations of the osmotic compounds for 24 h reduced the number of biofilm bacteria by 5 to 7 log ( < 0.05). Increasing concentrations of osmotic compounds improved the effect, but there was a trade-off with increasing solution viscosity, whereby low-molecular-mass compounds (sucrose, 400-Da PEG) worked better than higher-mass compounds (maltodextrin, 3,350-Da PEG). Ten other strains were similarly treated with 400-Da PEG and tobramycin, resulting in a mean 2.7-log reduction in recoverable bacteria compared with tobramycin treatment alone. Multivariate regression models with data from different osmotic compounds and nine antibiotics demonstrated that the benefit from combining hypertonic treatments with antibiotics is a function of antibiotic mass and lipophilicity ( > 0.82; < 0.002), and the relationship was generalizable for biofilms formed by and K-12. Augmenting topical antibiotic therapies with a low-mass hypertonic treatment may enhance the efficacy of antibiotics against wound biofilms, particularly when using low-mass hydrophilic antibiotics. Biofilms form a barrier that protects bacteria from environmental insults, including exposure to antibiotics. We demonstrated that multiple osmotic compounds can enhance antibiotic efficacy against biofilm communities, but viscosity is a limiting factor, and the most effective compounds have lower molecular mass. The synergism between osmotic compounds and antibiotics is also dependent on the hydrophobicity and mass of the antibiotics. The statistical models presented herein provide a basis for predicting the optimal combination of osmotic compounds and antibiotics against surface biofilms communities.
生物膜相关感染是一项临床挑战,部分原因是水合基质保护细菌群落免受抗生素影响。在此,我们评估了不同的渗透化合物(麦芽糊精、蔗糖和聚乙二醇 [PEG])如何增强抗生素对生物膜群落的疗效。对已形成的(24小时)试管生物膜(菌株ATCC 17978)在存在或不存在不同抗生素最低抑菌浓度(MIC)10倍的情况下(50μg/ml妥布霉素、20μg/ml环丙沙星、300μg/ml氯霉素、30μg/ml萘啶酸或100μg/ml红霉素)用渗透化合物进行处理。将抗生素与高渗浓度的渗透化合物联合处理24小时可使生物膜细菌数量减少5至7个对数(<0.05)。渗透化合物浓度的增加改善了效果,但与溶液粘度增加存在权衡,由此低分子量化合物(蔗糖、400道尔顿PEG)比高分子量化合物(麦芽糊精、3350道尔顿PEG)效果更好。用400道尔顿PEG和妥布霉素对其他10个菌株进行类似处理,与单独用妥布霉素处理相比,可培养细菌数量平均减少2.7个对数。对来自不同渗透化合物和九种抗生素的数据建立的多变量回归模型表明,高渗处理与抗生素联合使用的益处是抗生素质量和亲脂性的函数(>0.82;<0.002),并且这种关系对于由[具体菌株1]和K - 12形成的生物膜具有普遍性。用低分子量高渗处理增强局部抗生素治疗可能会提高抗生素对伤口生物膜的疗效,特别是在使用低分子量亲水性抗生素时。生物膜形成一道屏障,保护细菌免受包括暴露于抗生素在内的环境侵害。我们证明多种渗透化合物可增强抗生素对生物膜群落的疗效,但粘度是一个限制因素,最有效的化合物具有较低分子量。渗透化合物与抗生素之间的协同作用还取决于抗生素的疏水性和质量。本文提出的统计模型为预测针对表面生物膜群落的渗透化合物与抗生素的最佳组合提供了基础。