Suppr超能文献

在棉花纤维伸长过程中,抑制假定甾醇载体基因可降低质膜通道的通透性并激活蔗糖转运基因。

Suppressing a Putative Sterol Carrier Gene Reduces Plasmodesmal Permeability and Activates Sucrose Transporter Genes during Cotton Fiber Elongation.

机构信息

Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310029, China.

National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P.R. China.

出版信息

Plant Cell. 2017 Aug;29(8):2027-2046. doi: 10.1105/tpc.17.00358. Epub 2017 Jul 26.

Abstract

Plasmodesmata (PDs) play vital roles in cell-to-cell communication and plant development. Emerging evidence suggests that sterols are involved in PD activity during cytokinesis. However, whether sterols contribute to PD gating between established cells remains unknown. Here, we isolated , a putative sterol carrier protein gene from elongating cotton () fibers. In contrast to wild-type fiber PDs, which opened at 5 to 10 d postanthesis (DPA) and closed only at 15 to 25 DPA, plants with suppressed expression had reduced sterol contents and closed PDs at 5 through 25 DPA The suppressed fibers exhibited callose deposition at the PDs, likely due to reduced expression of , which encodes a PD-targeting β-1,3-glucanase. Both expression and callose deposition were sensitive to a sterol biosynthesis inhibitor. Moreover, suppressing upregulated a cohort of and sucrose transporter genes in fiber cells. Collectively, our results indicate that (1) GhSCP2D is required for expression to degrade callose at the PD, thereby contributing to the establishment of the symplasmic pathway; and (2) blocking the symplasmic pathway by downregulating activates or increases the expression of and , leading to the switch from symplasmic to apoplasmic pathways.

摘要

胞间连丝(PDs)在细胞间通讯和植物发育中起着至关重要的作用。新出现的证据表明,甾醇在胞质分裂过程中的 PD 活性中起作用。然而,甾醇是否有助于已建立细胞之间的 PD 门控尚不清楚。在这里,我们从伸长的棉花()纤维中分离出一个假定的甾醇载体蛋白基因。与在开花后 5 至 10 天(DPA)开启且仅在 15 至 25 DPA 关闭的野生型纤维 PD 相反,表达受抑制的植物甾醇含量降低,并且在 5 至 25 DPA 期间 PD 关闭。受抑制的纤维在 PD 处表现出胼胝质沉积,可能是由于编码 PD 靶向 β-1,3-葡聚糖酶的基因表达减少所致。和 表达和胼胝质沉积均对甾醇生物合成抑制剂敏感。此外,抑制 上调纤维细胞中一组 和蔗糖转运基因的表达。总的来说,我们的结果表明:(1) GhSCP2D 是表达的必需条件,以降解 PD 处的胼胝质,从而有助于建立共质体途径;(2) 通过下调 阻断共质体途径会激活或增加 和 的表达,从而导致从共质体途径到质外体途径的转变。

相似文献

7
Suppressing a β-1,3-glucanase gene expression increases the seed and fibre yield in cotton.
Plant J. 2024 Oct;120(1):289-301. doi: 10.1111/tpj.16986. Epub 2024 Aug 18.

引用本文的文献

3
Significance of Raffinose Family Oligosaccharides (RFOs) metabolism in plants.
Adv Biotechnol (Singap). 2024 Mar 19;2(2):13. doi: 10.1007/s44307-024-00022-y.
4
A mechanohydraulic model supports a role for plasmodesmata in cotton fiber elongation.
PNAS Nexus. 2024 Jul 12;3(7):pgae256. doi: 10.1093/pnasnexus/pgae256. eCollection 2024 Jul.
5
Expression profile analysis of cotton fiber secondary cell wall thickening stage.
PeerJ. 2024 Jul 8;12:e17682. doi: 10.7717/peerj.17682. eCollection 2024.
6
Activation of ACS6 Facilitates Fiber Development by Improving Sucrose Metabolism and Transport.
Plants (Basel). 2023 Oct 11;12(20):3530. doi: 10.3390/plants12203530.
7
A comprehensive overview of cotton genomics, biotechnology and molecular biological studies.
Sci China Life Sci. 2023 Oct;66(10):2214-2256. doi: 10.1007/s11427-022-2278-0. Epub 2023 Mar 6.
8
Genome-wide analysis and characterization of gene family reveal involvement in sucrose transportation in plants.
Front Plant Sci. 2023 Jan 20;13:1118398. doi: 10.3389/fpls.2022.1118398. eCollection 2022.
9
Enhancing crop yields through improvements in the efficiency of photosynthesis and respiration.
New Phytol. 2023 Jan;237(1):60-77. doi: 10.1111/nph.18545. Epub 2022 Nov 17.
10
Retrieving a disrupted gene encoding phospholipase A for fibre enhancement in allotetraploid cultivated cotton.
Plant Biotechnol J. 2022 Sep;20(9):1770-1785. doi: 10.1111/pbi.13862. Epub 2022 Jun 29.

本文引用的文献

2
Phytosterol content and the campesterol:sitosterol ratio influence cotton fiber development: role of phytosterols in cell elongation.
Sci China Life Sci. 2016 Feb;59(2):183-93. doi: 10.1007/s11427-015-4992-3. Epub 2016 Jan 23.
3
Structure of a eukaryotic SWEET transporter in a homotrimeric complex.
Nature. 2015 Nov 12;527(7577):259-263. doi: 10.1038/nature15391. Epub 2015 Oct 19.
4
Orthologs of the archaeal isopentenyl phosphate kinase regulate terpenoid production in plants.
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):10050-5. doi: 10.1073/pnas.1504798112. Epub 2015 Jul 27.
5
SWEETs, transporters for intracellular and intercellular sugar translocation.
Curr Opin Plant Biol. 2015 Jun;25:53-62. doi: 10.1016/j.pbi.2015.04.005. Epub 2015 May 15.
6
Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement.
Nat Biotechnol. 2015 May;33(5):531-7. doi: 10.1038/nbt.3207. Epub 2015 Apr 20.
7
Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis.
Plant Cell. 2015 Apr;27(4):1228-50. doi: 10.1105/tpc.114.135731. Epub 2015 Mar 27.
9
SMART: recent updates, new developments and status in 2015.
Nucleic Acids Res. 2015 Jan;43(Database issue):D257-60. doi: 10.1093/nar/gku949. Epub 2014 Oct 9.
10
Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance.
Front Plant Sci. 2014 Apr 21;5:138. doi: 10.3389/fpls.2014.00138. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验