Suppr超能文献

定义癌症依赖图谱。

Defining a Cancer Dependency Map.

作者信息

Tsherniak Aviad, Vazquez Francisca, Montgomery Phil G, Weir Barbara A, Kryukov Gregory, Cowley Glenn S, Gill Stanley, Harrington William F, Pantel Sasha, Krill-Burger John M, Meyers Robin M, Ali Levi, Goodale Amy, Lee Yenarae, Jiang Guozhi, Hsiao Jessica, Gerath William F J, Howell Sara, Merkel Erin, Ghandi Mahmoud, Garraway Levi A, Root David E, Golub Todd R, Boehm Jesse S, Hahn William C

机构信息

Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, USA.

Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, USA; Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA.

出版信息

Cell. 2017 Jul 27;170(3):564-576.e16. doi: 10.1016/j.cell.2017.06.010.

Abstract

Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed DEMETER, an analytical framework that segregates on- from off-target effects of RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six SDs from the mean. We found predictive models for 426 dependencies (55%) by nonlinear regression modeling considering 66,646 molecular features. Many dependencies fall into a limited number of classes, and unexpectedly, in 82% of models, the top biomarkers were expression based. We demonstrated the basis behind one such predictive model linking hypermethylation of the UBB ubiquitin gene to a dependency on UBC. Together, these observations provide a foundation for a cancer dependency map that facilitates the prioritization of therapeutic targets.

摘要

大多数人类上皮肿瘤存在大量改变,这使得难以预测哪些基因是肿瘤存活所必需的。为了系统地识别癌症依赖性,我们分析了在多种人类癌细胞系中进行的501个全基因组功能丧失筛选。我们开发了DEMETER,这是一个分析框架,可区分RNAi的脱靶效应和靶向效应。在这些细胞系的子集中,有769个基因在与平均值相差六个标准差的阈值下表现出差异需求。通过考虑66,646个分子特征的非线性回归建模,我们找到了426种依赖性(55%)的预测模型。许多依赖性可归为有限的几类,而且出乎意料的是,在82%的模型中,顶级生物标志物是基于表达的。我们展示了一个这样的预测模型背后的基础,该模型将泛素基因UBB的高甲基化与对泛素结合酶UBC的依赖性联系起来。这些观察结果共同为癌症依赖性图谱奠定了基础,有助于确定治疗靶点的优先级。

相似文献

1
Defining a Cancer Dependency Map.
Cell. 2017 Jul 27;170(3):564-576.e16. doi: 10.1016/j.cell.2017.06.010.
7
A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization.
Cancer Cell. 2024 Feb 12;42(2):301-316.e9. doi: 10.1016/j.ccell.2023.12.016. Epub 2024 Jan 11.
8
Inferring cancer dependencies on metabolic genes from large-scale genetic screens.
BMC Biol. 2019 Apr 30;17(1):37. doi: 10.1186/s12915-019-0654-4.

引用本文的文献

1
Neural interaction explainable AI predicts drug response across cancers.
NAR Cancer. 2025 Sep 3;7(3):zcaf029. doi: 10.1093/narcan/zcaf029. eCollection 2025 Sep.
2
Effect of Ipomoeassin F on the Synthesis of Membrane and Secretory Proteins in Triple-Negative Breast Cancer Cells.
ACS Omega. 2025 Aug 19;10(34):38522-38530. doi: 10.1021/acsomega.5c02784. eCollection 2025 Sep 2.
3
Targeting FSP1 to induce ferroptosis in chromophobe renal cell carcinoma.
Oncogene. 2025 Sep 6. doi: 10.1038/s41388-025-03562-2.
7
Genetic suppression features ABHD18 as a Barth syndrome therapeutic target.
Nature. 2025 Sep 3. doi: 10.1038/s41586-025-09373-5.
10
Gene and pathway analysis of genome-wide genetic associations of bladder cancer.
Curr Urol. 2025 Sep;19(5):321-330. doi: 10.1097/CU9.0000000000000289. Epub 2025 Jun 5.

本文引用的文献

2
The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses.
Curr Protoc Bioinformatics. 2016 Jun 20;54:1.30.1-1.30.33. doi: 10.1002/cpbi.5.
4
Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting.
Cancer Discov. 2016 Aug;6(8):914-29. doi: 10.1158/2159-8290.CD-16-0154. Epub 2016 Jun 3.
5
Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance.
Cell. 2016 Jan 14;164(1-2):293-309. doi: 10.1016/j.cell.2015.11.062.
6
PANTHER version 10: expanded protein families and functions, and analysis tools.
Nucleic Acids Res. 2016 Jan 4;44(D1):D336-42. doi: 10.1093/nar/gkv1194. Epub 2015 Nov 17.
7
DGIdb 2.0: mining clinically relevant drug-gene interactions.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1036-44. doi: 10.1093/nar/gkv1165. Epub 2015 Nov 3.
8
Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset.
Cancer Discov. 2015 Nov;5(11):1210-23. doi: 10.1158/2159-8290.CD-15-0235. Epub 2015 Oct 19.
9
Identification and characterization of essential genes in the human genome.
Science. 2015 Nov 27;350(6264):1096-101. doi: 10.1126/science.aac7041. Epub 2015 Oct 15.
10
The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1054-68. doi: 10.1093/nar/gkv1037. Epub 2015 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验