Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.
DuPont Nutrition and Health, BP 10, 86220, Dangé-Saint-Romain, France.
Nat Microbiol. 2017 Oct;2(10):1374-1380. doi: 10.1038/s41564-017-0004-7. Epub 2017 Aug 7.
The CRISPR-Cas system owes its utility as a genome-editing tool to its origin as a prokaryotic immune system. The first demonstration of its activity against bacterial viruses (phages) is also the first record of phages evading that immunity . This evasion can be due to point mutations , large-scale deletions , DNA modifications , or phage-encoded proteins that interfere with the CRISPR-Cas system, known as anti-CRISPRs (Acrs) . The latter are of biotechnological interest, as Acrs can serve as off switches for CRISPR-based genome editing . Every Acr characterized to date originated from temperate phages, genomic islands, or prophages , and shared properties with the first Acr discovered. Here, with a phage-oriented approach, we have identified an unrelated Acr in a virulent phage of Streptococcus thermophilus. In challenging a S. thermophilus strain CRISPR-immunized against a set of virulent phages, we found one that evaded the CRISPR-encoded immunity >40,000× more often than the others. Through systematic cloning of its genes, we identified an Acr solely responsible for the abolished immunity. We extended our findings by demonstrating activity in another S. thermophilus strain, against unrelated phages, and in another bacterial genus immunized using the heterologous SpCas9 system favoured for genome editing. This Acr completely abolishes SpCas9-mediated immunity in our assays.
CRISPR-Cas 系统作为一种基因组编辑工具的实用性源于其作为原核免疫系统的起源。它对细菌病毒(噬菌体)活性的首次证明也是噬菌体逃避这种免疫的第一个记录。这种逃避可能是由于点突变、大规模缺失、DNA 修饰或噬菌体编码的蛋白干扰 CRISPR-Cas 系统,称为抗 CRISPRs(Acrs)。后者具有生物技术意义,因为 Acrs 可以作为基于 CRISPR 的基因组编辑的关闭开关。迄今为止,每一种被表征的 Acr 都来源于温和噬菌体、基因组岛或原噬菌体,并具有与第一个发现的 Acr 相同的特性。在这里,我们采用了一种噬菌体定向的方法,在嗜热链球菌的一种毒性噬菌体中发现了一种不相关的 Acr。在挑战一株针对一组毒性噬菌体进行了 CRISPR 免疫的嗜热链球菌菌株时,我们发现有一种噬菌体逃避 CRISPR 编码免疫的频率比其他噬菌体高出 40000 倍以上。通过对其基因的系统克隆,我们发现了一种仅负责废除免疫的 Acr。我们通过在另一种嗜热链球菌菌株、针对不相关噬菌体以及使用异源 SpCas9 系统免疫的另一种细菌属中进行的实验扩展了我们的发现,该系统有利于基因组编辑。在我们的实验中,这种 Acr 完全废除了 SpCas9 介导的免疫。