Suppr超能文献

关键激酶ATR:确保具有挑战性的基因组精确复制。

The essential kinase ATR: ensuring faithful duplication of a challenging genome.

作者信息

Saldivar Joshua C, Cortez David, Cimprich Karlene A

机构信息

Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, California 94305-5441, USA.

Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA.

出版信息

Nat Rev Mol Cell Biol. 2017 Oct;18(10):622-636. doi: 10.1038/nrm.2017.67. Epub 2017 Aug 16.

Abstract

One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.

摘要

保存珍本的一种方法是将其锁起来,远离所有可能造成损坏的源头。当然,一本无法查阅的书也没什么用,而且无论如何,纸张和油墨都会随着时间的推移而继续降解。就像一本书一样,我们DNA中存储的信息需要被读取,但它也不断受到攻击,因此需要得到保护。在这篇综述中,我们研究了由共济失调毛细血管扩张症和Rad3相关激酶(ATR)控制的复制应激反应如何感知并解决对DNA完整性的威胁,从而使DNA在我们所有细胞中都能保持可供读取的状态。我们讨论了多项揭示ATR激活机制精妙却日益复杂的数据。这涉及一组核心组件,它们将ATR招募到受应激的复制叉处,刺激激酶活性并放大ATR信号。我们重点关注ATR在控制细胞周期检查点、起始点激发和复制叉稳定性方面的活性,以及这些过程的适当调控对于确保挑战性基因组的忠实复制至关重要的方式。

相似文献

1
The essential kinase ATR: ensuring faithful duplication of a challenging genome.
Nat Rev Mol Cell Biol. 2017 Oct;18(10):622-636. doi: 10.1038/nrm.2017.67. Epub 2017 Aug 16.
2
Dormant origin signaling during unperturbed replication.
DNA Repair (Amst). 2019 Sep;81:102655. doi: 10.1016/j.dnarep.2019.102655. Epub 2019 Jul 8.
3
The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork.
Int J Mol Sci. 2023 Jun 22;24(13):10488. doi: 10.3390/ijms241310488.
5
ATRIP Deacetylation by SIRT2 Drives ATR Checkpoint Activation by Promoting Binding to RPA-ssDNA.
Cell Rep. 2016 Feb 16;14(6):1435-1447. doi: 10.1016/j.celrep.2016.01.018. Epub 2016 Feb 4.
7
ETAA1 acts at stalled replication forks to maintain genome integrity.
Nat Cell Biol. 2016 Nov;18(11):1185-1195. doi: 10.1038/ncb3415. Epub 2016 Oct 10.
8
Claspin - checkpoint adaptor and DNA replication factor.
FEBS J. 2019 Feb;286(3):441-455. doi: 10.1111/febs.14594. Epub 2018 Jun 29.
9
An extending ATR-CHK1 circuitry: the replication stress response and beyond.
Curr Opin Genet Dev. 2021 Dec;71:92-98. doi: 10.1016/j.gde.2021.07.003. Epub 2021 Jul 27.
10
Versatility of the Mec1 signaling network in mediating resistance to replication, genotoxic, and proteotoxic stresses.
Curr Genet. 2019 Jun;65(3):657-661. doi: 10.1007/s00294-018-0920-y. Epub 2019 Jan 5.

引用本文的文献

3
Therapeutic Targeting of DNA Damage Response Pathways in - and -Mutated Tumors.
Brain Tumor Res Treat. 2025 Jul;13(3):73-80. doi: 10.14791/btrt.2025.0017.
4
7
Isoform-specific function of NSD3 in DNA replication stress confers resistance to PARP inhibitors in prostate cancer.
Mol Cell. 2025 Jul 17;85(14):2673-2687.e8. doi: 10.1016/j.molcel.2025.06.004. Epub 2025 Jun 26.
9
Multifaced Anticancer Potential of Doxorubicin: Spotlight on Breast Cancer.
Dis Res. 2025 Mar;5(1):19-36. doi: 10.54457/dr.202402015. Epub 2025 Jan 17.

本文引用的文献

1
PHF11 promotes DSB resection, ATR signaling, and HR.
Genes Dev. 2017 Jan 1;31(1):46-58. doi: 10.1101/gad.291807.116. Epub 2017 Jan 23.
2
Telomeres in cancer: tumour suppression and genome instability.
Nat Rev Mol Cell Biol. 2017 Mar;18(3):175-186. doi: 10.1038/nrm.2016.171. Epub 2017 Jan 18.
3
Coupling of Homologous Recombination and the Checkpoint by ATR.
Mol Cell. 2017 Jan 19;65(2):336-346. doi: 10.1016/j.molcel.2016.12.007. Epub 2017 Jan 12.
4
Moonlighting at replication forks - a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51.
FEBS Lett. 2017 Apr;591(8):1083-1100. doi: 10.1002/1873-3468.12556. Epub 2017 Jan 30.
5
A Mechanism for Controlled Breakage of Under-replicated Chromosomes during Mitosis.
Dev Cell. 2016 Dec 19;39(6):740-755. doi: 10.1016/j.devcel.2016.11.017.
6
Bringing It All Together: Coupling Excision Repair to the DNA Damage Checkpoint.
Photochem Photobiol. 2017 Jan;93(1):238-244. doi: 10.1111/php.12667. Epub 2016 Dec 28.
7
RPA-Binding Protein ETAA1 Is an ATR Activator Involved in DNA Replication Stress Response.
Curr Biol. 2016 Dec 19;26(24):3257-3268. doi: 10.1016/j.cub.2016.10.030. Epub 2016 Nov 3.
8
ETAA1 acts at stalled replication forks to maintain genome integrity.
Nat Cell Biol. 2016 Nov;18(11):1185-1195. doi: 10.1038/ncb3415. Epub 2016 Oct 10.
9
Activation of the ATR kinase by the RPA-binding protein ETAA1.
Nat Cell Biol. 2016 Nov;18(11):1196-1207. doi: 10.1038/ncb3422. Epub 2016 Oct 10.
10
The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization.
J Biol Chem. 2016 Jun 24;291(26):13436-47. doi: 10.1074/jbc.M115.708263. Epub 2016 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验