Suppr超能文献

噬菌体疗法:多重耐药时代抗生素的替代方案。

Phage therapy: An alternative to antibiotics in the age of multi-drug resistance.

作者信息

Lin Derek M, Koskella Britt, Lin Henry C

机构信息

Derek M Lin, Henry C Lin, Section of Gastroenterology, New Mexico VA Health Care System, Albuquerque, NM 87108, United States.

出版信息

World J Gastrointest Pharmacol Ther. 2017 Aug 6;8(3):162-173. doi: 10.4292/wjgpt.v8.i3.162.

Abstract

The practice of phage therapy, which uses bacterial viruses (phages) to treat bacterial infections, has been around for almost a century. The universal decline in the effectiveness of antibiotics has generated renewed interest in revisiting this practice. Conventionally, phage therapy relies on the use of naturally-occurring phages to infect and lyse bacteria at the site of infection. Biotechnological advances have further expanded the repertoire of potential phage therapeutics to include novel strategies using bioengineered phages and purified phage lytic proteins. Current research on the use of phages and their lytic proteins, specifically against multidrug-resistant bacterial infections, suggests phage therapy has the potential to be used as either an alternative or a supplement to antibiotic treatments. Antibacterial therapies, whether phage- or antibiotic-based, each have relative advantages and disadvantages; accordingly, many considerations must be taken into account when designing novel therapeutic approaches for preventing and treating bacterial infections. Although much is still unknown about the interactions between phage, bacteria, and human host, the time to take phage therapy seriously seems to be rapidly approaching.

摘要

噬菌体疗法利用细菌病毒(噬菌体)治疗细菌感染,这种疗法已经存在了近一个世纪。抗生素有效性的普遍下降引发了人们对重新审视这种疗法的新兴趣。传统上,噬菌体疗法依靠使用天然存在的噬菌体来感染并裂解感染部位的细菌。生物技术的进步进一步扩大了潜在噬菌体疗法的范围,将使用生物工程噬菌体和纯化的噬菌体裂解蛋白的新策略也纳入其中。目前关于使用噬菌体及其裂解蛋白(特别是针对多重耐药细菌感染)的研究表明,噬菌体疗法有潜力作为抗生素治疗的替代或补充手段。抗菌疗法,无论是基于噬菌体还是基于抗生素的,都各有相对优势和劣势;因此,在设计预防和治疗细菌感染的新型治疗方法时,必须考虑许多因素。尽管噬菌体、细菌和人类宿主之间的相互作用仍有许多未知之处,但认真对待噬菌体疗法的时刻似乎正在迅速到来。

相似文献

1
Phage therapy: An alternative to antibiotics in the age of multi-drug resistance.
World J Gastrointest Pharmacol Ther. 2017 Aug 6;8(3):162-173. doi: 10.4292/wjgpt.v8.i3.162.
2
How Phages Overcome the Challenges of Drug Resistant Bacteria in Clinical Infections.
Infect Drug Resist. 2020 Jan 7;13:45-61. doi: 10.2147/IDR.S234353. eCollection 2020.
3
Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens.
J Antimicrob Chemother. 2014 Sep;69(9):2326-36. doi: 10.1093/jac/dku173. Epub 2014 May 28.
4
Injectable Phage-Loaded Microparticles Effectively Release Phages to Kill Methicillin-Resistant .
ACS Appl Mater Interfaces. 2024 Apr 10;16(14):17232-17241. doi: 10.1021/acsami.3c19443. Epub 2024 Mar 30.
5
Phage steering of antibiotic-resistance evolution in the bacterial pathogen, .
Evol Med Public Health. 2020 Jul 11;2020(1):148-157. doi: 10.1093/emph/eoaa026. eCollection 2020.
6
Correlation of Host Range Expansion of Therapeutic Bacteriophage Sb-1 with Allele State at a Hypervariable Repeat Locus.
Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.01209-19. Print 2019 Nov 15.
7
Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future.
BioDrugs. 2021 May;35(3):255-280. doi: 10.1007/s40259-021-00480-z. Epub 2021 Apr 21.
8
Molecular Basis for Lytic Bacteriophage Resistance in Enterococci.
mBio. 2016 Aug 30;7(4):e01304-16. doi: 10.1128/mBio.01304-16.
9
Bacteriophage effectively kills multidrug resistant Staphylococcus aureus clinical isolates from chronic rhinosinusitis patients.
Int Forum Allergy Rhinol. 2018 Mar;8(3):406-414. doi: 10.1002/alr.22046. Epub 2017 Dec 14.
10
Formation of therapeutic phage cocktail and endolysin to highly multi-drug resistant : and study.
Iran J Basic Med Sci. 2018 Nov;21(11):1100-1108. doi: 10.22038/IJBMS.2018.27307.6665.

引用本文的文献

1
Phage therapy and its role in cancer treatment and control.
Folia Microbiol (Praha). 2025 Sep 17. doi: 10.1007/s12223-025-01342-9.
2
Evaluating phage lytic activity: from plaque assays to single-cell technologies.
Front Microbiol. 2025 Aug 29;16:1659093. doi: 10.3389/fmicb.2025.1659093. eCollection 2025.
3
5
Bacteriophage Therapy: Discovery, Development, and FDA Approval Pathways.
Pharmaceuticals (Basel). 2025 Jul 26;18(8):1115. doi: 10.3390/ph18081115.
10
Genomic characterization and pre-clinical evaluation of a new polyvalent lytic Loughborough phage.
Appl Microbiol Biotechnol. 2025 Aug 2;109(1):177. doi: 10.1007/s00253-025-13559-2.

本文引用的文献

2
The microbiome: A key regulator of stress and neuroinflammation.
Neurobiol Stress. 2016 Mar 4;4:23-33. doi: 10.1016/j.ynstr.2016.03.001. eCollection 2016 Oct.
4
The impact of orally administered phages on host immune response and surrounding microbial communities.
Bacteriophage. 2016 Jul 13;6(3):e1211066. doi: 10.1080/21597081.2016.1211066. eCollection 2016 Jul-Sep.
6
Cryptic prophages as targets for drug development.
Drug Resist Updat. 2016 Jul;27:30-8. doi: 10.1016/j.drup.2016.06.001. Epub 2016 Jun 6.
7
Personalized Therapeutic Cocktail of Wild Environmental Phages Rescues Mice from Acinetobacter baumannii Wound Infections.
Antimicrob Agents Chemother. 2016 Sep 23;60(10):5806-16. doi: 10.1128/AAC.02877-15. Print 2016 Oct.
8
Bacteriophage infections of microbiota can lead to leaky gut in an experimental rodent model.
Gut Pathog. 2016 Jun 23;8:33. doi: 10.1186/s13099-016-0109-1. eCollection 2016.
9
DRUG DEVELOPMENT. Beleaguered phage therapy trial presses on.
Science. 2016 Jun 24;352(6293):1506. doi: 10.1126/science.352.6293.1506.
10
The Janus-Face of Bacteriophages across Human Body Habitats.
PLoS Pathog. 2016 Jun 23;12(6):e1005634. doi: 10.1371/journal.ppat.1005634. eCollection 2016 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验