Suppr超能文献

用动力学网络模型连接p53-MDM2结合的微观和宏观机制

Bridging Microscopic and Macroscopic Mechanisms of p53-MDM2 Binding with Kinetic Network Models.

作者信息

Zhou Guangfeng, Pantelopulos George A, Mukherjee Sudipto, Voelz Vincent A

机构信息

Department of Chemistry, Temple University, Philadelphia, Pennsylvania.

Department of Chemistry, Temple University, Philadelphia, Pennsylvania.

出版信息

Biophys J. 2017 Aug 22;113(4):785-793. doi: 10.1016/j.bpj.2017.07.009.

Abstract

Under normal cellular conditions, the tumor suppressor protein p53 is kept at low levels in part due to ubiquitination by MDM2, a process initiated by binding of MDM2 to the intrinsically disordered transactivation domain (TAD) of p53. Many experimental and simulation studies suggest that disordered domains such as p53 TAD bind their targets nonspecifically before folding to a tightly associated conformation, but the microscopic details are unclear. Toward a detailed prediction of binding mechanisms, pathways, and rates, we have performed large-scale unbiased all-atom simulations of p53-MDM2 binding. Markov state models (MSMs) constructed from the trajectory data predict p53 TAD binding pathways and on-rates in good agreement with experiment. The MSM reveals that two key bound intermediates, each with a nonnative arrangement of hydrophobic residues in the MDM2 binding cleft, control the overall on-rate. Using microscopic rate information from the MSM, we parameterize a simple four-state kinetic model to 1) determine that induced-fit pathways dominate the binding flux over a large range of concentrations, and 2) predict how modulation of residual p53 helicity affects binding, in good agreement with experiment. These results suggest new ways in which microscopic models of peptide binding, coupled with simple few-state binding flux models, can be used to understand biological function in physiological contexts.

摘要

在正常细胞条件下,肿瘤抑制蛋白p53的水平维持在较低水平,部分原因是MDM2介导的泛素化作用,这一过程始于MDM2与p53内在无序的反式激活结构域(TAD)的结合。许多实验和模拟研究表明,像p53 TAD这样的无序结构域在折叠成紧密结合构象之前会非特异性地结合其靶点,但微观细节尚不清楚。为了详细预测结合机制、途径和速率,我们对p53-MDM2结合进行了大规模无偏全原子模拟。根据轨迹数据构建的马尔可夫状态模型(MSM)预测的p53 TAD结合途径和结合速率与实验结果高度吻合。MSM显示,两个关键的结合中间体控制着总体结合速率,每个中间体在MDM2结合裂隙中都有非天然的疏水残基排列。利用MSM提供的微观速率信息,我们对一个简单的四态动力学模型进行参数化,以1)确定在大范围浓度下诱导契合途径主导结合通量,以及2)预测p53残余螺旋度的调节如何影响结合,这与实验结果高度吻合。这些结果表明了肽结合微观模型与简单的少态结合通量模型相结合可用于理解生理环境中生物学功能的新方法。

相似文献

1
Bridging Microscopic and Macroscopic Mechanisms of p53-MDM2 Binding with Kinetic Network Models.
Biophys J. 2017 Aug 22;113(4):785-793. doi: 10.1016/j.bpj.2017.07.009.
3
Dissociation Process of a MDM2/p53 Complex Investigated by Parallel Cascade Selection Molecular Dynamics and the Markov State Model.
J Phys Chem B. 2019 Mar 21;123(11):2469-2478. doi: 10.1021/acs.jpcb.8b10309. Epub 2019 Jan 30.
4
Solution-State Preorganization of Cyclic β-Hairpin Ligands Determines Binding Mechanism and Affinities for MDM2.
J Chem Inf Model. 2021 May 24;61(5):2353-2367. doi: 10.1021/acs.jcim.1c00029. Epub 2021 Apr 27.
5
Binding Kinetics of the Intrinsically Disordered p53 Family Transactivation Domains and MDM2.
J Phys Chem B. 2018 Jul 12;122(27):6899-6905. doi: 10.1021/acs.jpcb.8b03876. Epub 2018 Jun 26.
6
Kinetic Selection and Relaxation of the Intrinsically Disordered Region of a Protein upon Binding.
J Chem Theory Comput. 2020 Apr 14;16(4):2835-2845. doi: 10.1021/acs.jctc.9b01203. Epub 2020 Apr 1.
7
Binding induced folding in p53-MDM2 complex.
J Am Chem Soc. 2007 Mar 14;129(10):2930-7. doi: 10.1021/ja0678774. Epub 2007 Feb 16.
8
Markov State Models to Elucidate Ligand Binding Mechanism.
Methods Mol Biol. 2021;2266:239-259. doi: 10.1007/978-1-0716-1209-5_14.
9
Structural details on mdm2-p53 interaction.
J Biol Chem. 2005 Nov 18;280(46):38795-802. doi: 10.1074/jbc.M508578200. Epub 2005 Sep 13.

引用本文的文献

2
Protein Retrieval via Integrative Molecular Ensembles (PRIME) through Extended Similarity Indices.
J Chem Theory Comput. 2024 Jul 23;20(14):6303-6315. doi: 10.1021/acs.jctc.4c00362. Epub 2024 Jul 8.
4
Revolutionizing Peptide-Based Drug Discovery: Advances in the Post-AlphaFold Era.
Wiley Interdiscip Rev Comput Mol Sci. 2024 Jan-Feb;14(1). doi: 10.1002/wcms.1693. Epub 2023 Nov 12.
5
A Kinetic Transition Network Model Reveals the Diversity of Protein Dimer Formation Mechanisms.
Biomolecules. 2023 Nov 26;13(12):1708. doi: 10.3390/biom13121708.
6
Markov State Model of Solvent Features Reveals Water Dynamics in Protein-Peptide Binding.
J Phys Chem B. 2023 Dec 21;127(50):10682-10690. doi: 10.1021/acs.jpcb.3c04775. Epub 2023 Dec 11.
7
Modelling peptide-protein complexes: docking, simulations and machine learning.
QRB Discov. 2022 Sep 19;3:e17. doi: 10.1017/qrd.2022.14. eCollection 2022.
8
Binding-and-Folding Recognition of an Intrinsically Disordered Protein Using Online Learning Molecular Dynamics.
J Chem Theory Comput. 2023 Jul 11;19(13):3817-3824. doi: 10.1021/acs.jctc.3c00008. Epub 2023 Jun 21.
9
Markov State Study of Electrostatic Channeling within the Tricarboxylic Acid Cycle Supercomplex.
ACS Nanosci Au. 2022 Jun 7;2(5):414-421. doi: 10.1021/acsnanoscienceau.2c00011. eCollection 2022 Oct 19.

本文引用的文献

1
Optimized parameter selection reveals trends in Markov state models for protein folding.
J Chem Phys. 2016 Nov 21;145(19):194103. doi: 10.1063/1.4967809.
3
Multiensemble Markov models of molecular thermodynamics and kinetics.
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):E3221-30. doi: 10.1073/pnas.1525092113. Epub 2016 May 25.
4
The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches.
Annu Rev Biochem. 2016 Jun 2;85:375-404. doi: 10.1146/annurev-biochem-060815-014710. Epub 2016 May 4.
5
Using Kinetic Network Models To Probe Non-Native Salt-Bridge Effects on α-Helix Folding.
J Phys Chem B. 2016 Feb 11;120(5):926-35. doi: 10.1021/acs.jpcb.5b11767. Epub 2016 Feb 1.
6
Surprisal Metrics for Quantifying Perturbed Conformational Dynamics in Markov State Models.
J Chem Theory Comput. 2014 Dec 9;10(12):5716-28. doi: 10.1021/ct500827g.
7
Investigating Molecular Kinetics by Variationally Optimized Diffusion Maps.
J Chem Theory Comput. 2015 Dec 8;11(12):5947-60. doi: 10.1021/acs.jctc.5b00749. Epub 2015 Nov 18.
8
Inferring Transition Rates of Networks from Populations in Continuous-Time Markov Processes.
J Chem Theory Comput. 2015 Nov 10;11(11):5464-72. doi: 10.1021/acs.jctc.5b00537. Epub 2015 Oct 2.
9
MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.
Biophys J. 2015 Oct 20;109(8):1528-32. doi: 10.1016/j.bpj.2015.08.015.
10
WESTPA: an interoperable, highly scalable software package for weighted ensemble simulation and analysis.
J Chem Theory Comput. 2015 Feb 10;11(2):800-9. doi: 10.1021/ct5010615.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验