Suppr超能文献

tRNA:结构、功能与应用。

tRNA: Structure, function, and applications.

机构信息

a Department of Chemistry , Texas A&M University , College Station , TX , USA.

出版信息

RNA Biol. 2018;15(4-5):441-452. doi: 10.1080/15476286.2017.1356561. Epub 2017 Sep 13.

Abstract

Pyrrolysine is the 22nd proteinogenic amino acid encoded into proteins in response to amber (TAG) codons in a small number of archaea and bacteria. The incorporation of pyrrolysine is facilitated by a specialized aminoacyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNA). The secondary structure of tRNA contains several unique features not found in canonical tRNAs. Numerous studies have demonstrated that the PylRS/tRNA pair from archaea is orthogonal in E. coli and eukaryotic hosts, which has led to the widespread use of this pair for the genetic incorporation of non-canonical amino acids. In this brief review we examine the work that has been done to elucidate the structure of tRNA, its interaction with PylRS, and survey recent progress on the use of tRNA as a tool for genetic code expansion.

摘要

吡咯赖氨酸是第 22 种蛋白氨基酸,少数古菌和细菌通过对琥珀色(TAG)密码子的反应将其编码到蛋白质中。吡咯赖氨酸的掺入是由专门的氨酰-tRNA 合成酶(PylRS)及其同源 tRNA(tRNA)介导的。tRNA 的二级结构包含一些在典型 tRNA 中找不到的独特特征。许多研究表明,来自古菌的 PylRS/tRNA 对在大肠杆菌和真核宿主中是正交的,这导致了该对在遗传掺入非典型氨基酸方面的广泛应用。在这篇简短的综述中,我们考察了阐明 tRNA 结构、其与 PylRS 相互作用以及调查最近在将 tRNA 用作遗传密码扩展工具方面的进展的工作。

相似文献

1
tRNA: Structure, function, and applications.
RNA Biol. 2018;15(4-5):441-452. doi: 10.1080/15476286.2017.1356561. Epub 2017 Sep 13.
2
Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool.
Biochim Biophys Acta. 2014 Jun;1844(6):1059-70. doi: 10.1016/j.bbapap.2014.03.002. Epub 2014 Mar 12.
3
Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pair and Derivatives for Genetic Code Expansion.
J Bacteriol. 2023 Feb 22;205(2):e0038522. doi: 10.1128/jb.00385-22. Epub 2023 Jan 25.
4
An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells.
Biochemistry. 2019 Feb 5;58(5):387-390. doi: 10.1021/acs.biochem.8b00808. Epub 2018 Sep 27.
5
Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality.
Nature. 2009 Feb 26;457(7233):1163-7. doi: 10.1038/nature07611. Epub 2008 Dec 31.
6
Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs.
Nat Chem. 2018 Aug;10(8):831-837. doi: 10.1038/s41557-018-0052-5. Epub 2018 May 28.
7
Ancestral archaea expanded the genetic code with pyrrolysine.
J Biol Chem. 2022 Nov;298(11):102521. doi: 10.1016/j.jbc.2022.102521. Epub 2022 Sep 22.
8
Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase.
J Mol Biol. 2009 Feb 6;385(5):1352-60. doi: 10.1016/j.jmb.2008.11.059. Epub 2008 Dec 11.
9
Pyrrolysine is not hardwired for cotranslational insertion at UAG codons.
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3141-6. doi: 10.1073/pnas.0611634104. Epub 2007 Feb 20.
10
Structural Basis for Genetic-Code Expansion with Bulky Lysine Derivatives by an Engineered Pyrrolysyl-tRNA Synthetase.
Cell Chem Biol. 2019 Jul 18;26(7):936-949.e13. doi: 10.1016/j.chembiol.2019.03.008. Epub 2019 Apr 25.

引用本文的文献

1
Purification of post-transcriptionally modified tRNAs for enhanced cell-free translation systems.
bioRxiv. 2025 Jun 10:2025.06.10.658963. doi: 10.1101/2025.06.10.658963.
2
Residue-Specific Incorporation of Noncanonical Amino Acids in Auxotrophic Hosts:
Chem Rev. 2025 May 28;125(10):4840-4932. doi: 10.1021/acs.chemrev.4c00280. Epub 2025 May 16.
3
Thioesters Support Efficient Protein Biosynthesis by the Ribosome.
ACS Cent Sci. 2025 Jan 30;11(3):404-412. doi: 10.1021/acscentsci.4c01698. eCollection 2025 Mar 26.
4
Pyrrolysine Aminoacyl-tRNA Synthetase as a Tool for Expanding the Genetic Code.
Int J Mol Sci. 2025 Jan 10;26(2):539. doi: 10.3390/ijms26020539.
5
Efficient suppression of premature termination codons with alanine by engineered chimeric pyrrolysine tRNAs.
Nucleic Acids Res. 2024 Dec 11;52(22):14244-14259. doi: 10.1093/nar/gkae1048.
6
Navigating the archaeal frontier: insights and projections from bioinformatic pipelines.
Front Microbiol. 2024 Sep 23;15:1433224. doi: 10.3389/fmicb.2024.1433224. eCollection 2024.
7
Tuning tRNAs for improved translation.
Front Genet. 2024 Jun 25;15:1436860. doi: 10.3389/fgene.2024.1436860. eCollection 2024.
8
Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion.
Chem Rev. 2024 Aug 28;124(16):9580-9608. doi: 10.1021/acs.chemrev.4c00031. Epub 2024 Jul 2.
9
Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers.
Chem Rev. 2024 May 22;124(10):6444-6500. doi: 10.1021/acs.chemrev.3c00894. Epub 2024 Apr 30.

本文引用的文献

1
Designing logical codon reassignment - Expanding the chemistry in biology.
Chem Sci. 2015 Jan 1;6(1):50-69. doi: 10.1039/c4sc01534g. Epub 2014 Jul 14.
2
Pyrrolysyl-tRNA synthetase, an aminoacyl-tRNA synthetase for genetic code expansion.
Croat Chem Acta. 2016 Jun;89(2):163-174. doi: 10.5562/cca2825. Epub 2016 Jun 14.
3
Expanding the genetic code of Mus musculus.
Nat Commun. 2017 Feb 21;8:14568. doi: 10.1038/ncomms14568.
4
An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli.
Biochim Biophys Acta Gen Subj. 2017 Nov;1861(11 Pt B):3016-3023. doi: 10.1016/j.bbagen.2017.02.017. Epub 2017 Feb 14.
5
Horizontal gene transfer drives the evolution of Rh50 permeases in prokaryotes.
BMC Evol Biol. 2017 Jan 3;17(1):2. doi: 10.1186/s12862-016-0850-6.
7
Genetic code expansion in the mouse brain.
Nat Chem Biol. 2016 Oct;12(10):776-778. doi: 10.1038/nchembio.2160. Epub 2016 Aug 29.
10
Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.
ACS Synth Biol. 2016 Feb 19;5(2):163-71. doi: 10.1021/acssynbio.5b00197. Epub 2015 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验