Chakravarty Shubham, Melton Cameron N, Bailin Adam, Yahr Timothy L, Anderson Gregory G
Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA.
Department of Microbiology, University of Iowa, Iowa City, Iowa, USA.
J Bacteriol. 2017 Oct 31;199(23). doi: 10.1128/JB.00268-17. Print 2017 Dec 1.
causes numerous acute and chronic opportunistic infections in humans. One of its most formidable weapons is a type III secretion system (T3SS), which injects powerful toxins directly into host cells. The toxins lead to cell dysfunction and, ultimately, cell death. Identification of regulatory pathways that control T3SS gene expression may lead to the discovery of novel therapeutics to treat infections. In a previous study, we found that expression of the magnesium transporter gene inhibits T3SS gene transcription. MgtE-dependent inhibition appeared to interfere with the synthesis or function of the master T3SS transcriptional activator ExsA, although the exact mechanism was unclear. We now demonstrate that expression acts through the GacAS two-component system to activate and transcription. This event ultimately leads to inhibition of translation. This inhibitory effect is specific to as translation of other genes in the operon is not inhibited by Moreover, our data reveal that MgtE acts solely through this pathway to regulate T3SS gene transcription. Our study reveals an important mechanism that may allow to fine-tune T3SS activity in response to certain environmental stimuli. The type III secretion system (T3SS) is a critical virulence factor utilized by numerous Gram-negative bacteria, including , to intoxicate and kill host cells. Elucidating T3SS regulatory mechanisms may uncover targets for novel anti- therapeutics and provide deeper understanding of bacterial pathogenesis. We previously found that the magnesium transporter MgtE inhibits T3SS gene transcription in In this study, we describe the mechanism of MgtE-dependent inhibition of the T3SS. Our report also illustrates how MgtE might respond to environmental cues, such as magnesium levels, to fine-tune T3SS gene expression.
在人类中引发众多急性和慢性机会性感染。其最强大的武器之一是III型分泌系统(T3SS),该系统可将强大的毒素直接注入宿主细胞。这些毒素会导致细胞功能障碍,并最终导致细胞死亡。鉴定控制T3SS基因表达的调控途径可能会带来治疗感染的新型疗法。在先前的一项研究中,我们发现镁转运蛋白基因的表达会抑制T3SS基因转录。尽管确切机制尚不清楚,但MgtE依赖性抑制似乎会干扰T3SS主转录激活因子ExsA的合成或功能。我们现在证明, 表达通过GacAS双组分系统发挥作用,以激活 和 转录。这一事件最终导致 翻译受到抑制。这种抑制作用对 具有特异性,因为 操纵子中其他基因的翻译不会受到 的抑制。此外,我们的数据表明MgtE仅通过该途径调节T3SS基因转录。我们的研究揭示了一种重要机制,该机制可能使 能够根据某些环境刺激微调T3SS活性。III型分泌系统(T3SS)是许多革兰氏阴性细菌(包括 )用来毒害和杀死宿主细胞的关键毒力因子。阐明T3SS调控机制可能会揭示新型抗 疗法的靶点,并提供对细菌发病机制的更深入理解。我们先前发现镁转运蛋白MgtE在 中抑制T3SS基因转录。在本研究中,我们描述了MgtE依赖性抑制T3SS的机制。我们的报告还说明了MgtE可能如何响应环境线索(如镁水平)来微调T3SS基因表达。