Suppr超能文献

利用基因编码的光活化交联剂探究蛋白质-蛋白质相互作用

Probing Protein-Protein Interactions with Genetically Encoded Photoactivatable Cross-Linkers.

作者信息

Cooley Richard B, Sondermann Holger

机构信息

Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.

Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA.

出版信息

Methods Mol Biol. 2017;1657:331-345. doi: 10.1007/978-1-4939-7240-1_26.

Abstract

Fundamental to all living organisms is the ability of proteins to interact with other biological molecules at the right time and location, with the proper affinity, and to do so reversibly. One well-established technique to study protein interactions is chemical cross-linking, a process in which proteins in close spatial proximity are covalently tethered together. An emerging technology that overcomes many limitations of traditional cross-linking methods is one in which photoactivatable cross-linking noncanonical amino acids are genetically encoded into a protein of interest using the cell's native translational machinery. These proteins can then be used to trap interacting biomolecules upon UV illumination. Here, we describe a method for the site-specific incorporation of photoactivatable cross-linking amino acids into fluorescently tagged proteins of interest in E. coli. Photo-cross-linking and analysis by SDS-PAGE using in-gel fluorescence detection, which provides rapid, highly sensitive, and specific detection of cross-linked adducts even in impure systems, are also described. An example expression and cross-linking experiment involving transmembrane signaling of a bacterial second messenger receptor system that controls biofilm formation is shown. All reagents needed to carry out these experiments are commercially available, and do not require special or unique technology to perform, making this method tractable to a broad community studying protein structure and function.

摘要

蛋白质在正确的时间和位置、以适当的亲和力与其他生物分子相互作用并能可逆地进行这种相互作用的能力,是所有生物的基本特征。一种成熟的研究蛋白质相互作用的技术是化学交联,即空间上紧密相邻的蛋白质通过共价键连接在一起的过程。一种克服了传统交联方法许多局限性的新兴技术是,利用细胞自身的翻译机制将光活化交联非天然氨基酸基因编码到目标蛋白质中。然后,这些蛋白质可用于在紫外线照射下捕获相互作用的生物分子。在这里,我们描述了一种在大肠杆菌中将光活化交联氨基酸位点特异性掺入感兴趣的荧光标记蛋白质中的方法。还介绍了使用凝胶内荧光检测通过SDS-PAGE进行光交联和分析,即使在不纯的系统中,这种检测也能快速、高度灵敏且特异性地检测交联加合物。展示了一个涉及控制生物膜形成的细菌第二信使受体系统跨膜信号传导的表达和交联实验示例。进行这些实验所需的所有试剂均可从商业渠道获得,并且不需要特殊或独特的技术来操作,这使得该方法对于广泛研究蛋白质结构和功能的群体来说是可行的。

相似文献

1
Probing Protein-Protein Interactions with Genetically Encoded Photoactivatable Cross-Linkers.
Methods Mol Biol. 2017;1657:331-345. doi: 10.1007/978-1-4939-7240-1_26.
2
Genetically encoded releasable photo-cross-linking strategies for studying protein-protein interactions in living cells.
Nat Protoc. 2017 Oct;12(10):2147-2168. doi: 10.1038/nprot.2017.090. Epub 2017 Sep 21.
3
A photo-cross-linking approach to monitor protein dynamics in living cells.
Biochim Biophys Acta Gen Subj. 2020 Feb;1864(2):129317. doi: 10.1016/j.bbagen.2019.03.003. Epub 2019 Mar 6.
4
Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid.
Nat Methods. 2005 Mar;2(3):201-6. doi: 10.1038/nmeth739. Epub 2005 Feb 17.
5
Probing protein-protein interactions with a genetically encoded photo-crosslinking amino acid.
Chembiochem. 2011 Aug 16;12(12):1854-7. doi: 10.1002/cbic.201100194. Epub 2011 Jun 15.
7
Conditional Chaperone-Client Interactions Revealed by Genetically Encoded Photo-cross-linkers.
Acc Chem Res. 2017 May 16;50(5):1184-1192. doi: 10.1021/acs.accounts.6b00647. Epub 2017 May 3.
8
Genetically encoded photocrosslinkers for identifying and mapping protein-protein interactions in living cells.
IUBMB Life. 2016 Nov;68(11):879-886. doi: 10.1002/iub.1560. Epub 2016 Sep 26.
9
Residue selective crosslinking of proteins through photoactivatable or proximity-enabled reactivity.
Curr Opin Chem Biol. 2023 Jun;74:102285. doi: 10.1016/j.cbpa.2023.102285. Epub 2023 Mar 11.

引用本文的文献

1
A Conserved Regulatory Circuit Controls Large Adhesins in Vibrio cholerae.
mBio. 2019 Dec 3;10(6):e02822-19. doi: 10.1128/mBio.02822-19.

本文引用的文献

1
Designing logical codon reassignment - Expanding the chemistry in biology.
Chem Sci. 2015 Jan 1;6(1):50-69. doi: 10.1039/c4sc01534g. Epub 2014 Jul 14.
3
Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate.
J Bacteriol. 2015 Jun 22;198(1):66-76. doi: 10.1128/JB.00369-15. Print 2016 Jan 1.
5
LapG, required for modulating biofilm formation by Pseudomonas fluorescens Pf0-1, is a calcium-dependent protease.
J Bacteriol. 2012 Aug;194(16):4406-14. doi: 10.1128/JB.00642-12. Epub 2012 Jun 15.
6
Visualizing protein partnerships in living cells and organisms.
Curr Opin Chem Biol. 2011 Dec;15(6):781-8. doi: 10.1016/j.cbpa.2011.10.024. Epub 2011 Nov 19.
7
Site-specific incorporation of unnatural amino acids as probes for protein conformational changes.
Methods Mol Biol. 2012;794:125-34. doi: 10.1007/978-1-61779-331-8_8.
8
Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis.
PLoS Biol. 2011 Feb 1;9(2):e1000588. doi: 10.1371/journal.pbio.1000588.
9
A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage.
PLoS Biol. 2011 Feb 1;9(2):e1000587. doi: 10.1371/journal.pbio.1000587.
10
An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity.
Biochemistry. 2011 Mar 22;50(11):1894-900. doi: 10.1021/bi101929e. Epub 2011 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验