Suppr超能文献

大鼠肾脏近端小管中的细胞体积调节:近端小管细胞体积调节

Cell Volume Regulation in the Proximal Tubule of Rat Kidney : Proximal Tubule Cell Volume Regulation.

作者信息

Edwards Aurélie, Layton Anita T

机构信息

Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.

Departments of Mathematics and Biomedical Engineering, Duke University, Durham, NC, 27708-0320, USA.

出版信息

Bull Math Biol. 2017 Nov;79(11):2512-2533. doi: 10.1007/s11538-017-0338-6. Epub 2017 Sep 12.

Abstract

We developed a dynamic model of a rat proximal convoluted tubule cell in order to investigate cell volume regulation mechanisms in this nephron segment. We examined whether regulatory volume decrease (RVD), which follows exposure to a hyposmotic peritubular solution, can be achieved solely via stimulation of basolateral K[Formula: see text] and [Formula: see text] channels and [Formula: see text]-[Formula: see text] cotransporters. We also determined whether regulatory volume increase (RVI), which follows exposure to a hyperosmotic peritubular solution under certain conditions, may be accomplished by activating basolateral [Formula: see text]/H[Formula: see text] exchangers. Model predictions were in good agreement with experimental observations in mouse proximal tubule cells assuming that a 10% increase in cell volume induces a fourfold increase in the expression of basolateral K[Formula: see text] and [Formula: see text] channels and [Formula: see text]-[Formula: see text] cotransporters. Our results also suggest that in response to a hyposmotic challenge and subsequent cell swelling, [Formula: see text]-[Formula: see text] cotransporters are more efficient than basolateral K[Formula: see text] and [Formula: see text] channels at lowering intracellular osmolality and reducing cell volume. Moreover, both RVD and RVI are predicted to stabilize net transcellular [Formula: see text] reabsorption, that is, to limit the net [Formula: see text] flux decrease during a hyposmotic challenge or the net [Formula: see text] flux increase during a hyperosmotic challenge.

摘要

我们构建了大鼠近端肾小管细胞的动态模型,以研究该肾单位节段中的细胞体积调节机制。我们研究了暴露于低渗性肾小管周围溶液后发生的调节性容积减小(RVD)是否仅通过刺激基底外侧K⁺和Cl⁻通道以及Na⁺-K⁺-2Cl⁻协同转运体就能实现。我们还确定了在某些条件下暴露于高渗性肾小管周围溶液后发生的调节性容积增加(RVI)是否可通过激活基底外侧Na⁺/H⁺交换体来实现。假设细胞体积增加10%会导致基底外侧K⁺和Cl⁻通道以及Na⁺-K⁺-2Cl⁻协同转运体的表达增加四倍,模型预测结果与小鼠近端小管细胞的实验观察结果高度一致。我们的结果还表明,在应对低渗性刺激和随后的细胞肿胀时,Na⁺-K⁺-2Cl⁻协同转运体在降低细胞内渗透压和减小细胞体积方面比基底外侧K⁺和Cl⁻通道更有效。此外,预计RVD和RVI均可稳定跨细胞Na⁺重吸收净值,即在低渗性刺激期间限制Na⁺通量净减少,或在高渗性刺激期间限制Na⁺通量净增加。

相似文献

1
Cell Volume Regulation in the Proximal Tubule of Rat Kidney : Proximal Tubule Cell Volume Regulation.
Bull Math Biol. 2017 Nov;79(11):2512-2533. doi: 10.1007/s11538-017-0338-6. Epub 2017 Sep 12.
2
Effects of P-glycoprotein on cell volume regulation in mouse proximal tubule.
Am J Physiol Renal Physiol. 2001 May;280(5):F829-37. doi: 10.1152/ajprenal.2001.280.5.F829.
3
Regulation of glomerulotubular balance. IV. Implication of aquaporin 1 in flow-dependent proximal tubule transport and cell volume.
Am J Physiol Renal Physiol. 2022 Dec 1;323(6):F642-F653. doi: 10.1152/ajprenal.00167.2022. Epub 2022 Sep 15.
4
Regulatory volume decrease in perfused proximal nephron: evidence for a dumping of cell K+.
Am J Physiol. 1987 May;252(5 Pt 2):F933-42. doi: 10.1152/ajprenal.1987.252.5.F933.
7
Stretch- and volume-activated channels in isolated proximal tubule cells.
Am J Physiol. 1992 May;262(5 Pt 2):F857-70. doi: 10.1152/ajprenal.1992.262.5.F857.
8
A mathematical model of the rat kidney. IV. Whole kidney response to hyperkalemia.
Am J Physiol Renal Physiol. 2022 Feb 1;322(2):F225-F244. doi: 10.1152/ajprenal.00413.2021. Epub 2022 Jan 10.
9
Coupling of entry to exit by peritubular K+ permeability in a mathematical model of rat proximal tubule.
Am J Physiol. 1996 Jul;271(1 Pt 2):F158-68. doi: 10.1152/ajprenal.1996.271.1.F158.
10
Cell volume regulation in rabbit proximal straight tubule perfused in vitro.
Am J Physiol. 1987 May;252(5 Pt 2):F922-32. doi: 10.1152/ajprenal.1987.252.5.F922.

引用本文的文献

1
A modular and reusable model of epithelial transport in the proximal convoluted tubule.
PLoS One. 2022 Nov 10;17(11):e0275837. doi: 10.1371/journal.pone.0275837. eCollection 2022.
3
A computational model of epithelial solute and water transport along a human nephron.
PLoS Comput Biol. 2019 Feb 25;15(2):e1006108. doi: 10.1371/journal.pcbi.1006108. eCollection 2019 Feb.
4
A model of calcium transport and regulation in the proximal tubule.
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F942-F953. doi: 10.1152/ajprenal.00129.2018. Epub 2018 May 30.
5
Predicted effect of circadian clock modulation of NHE3 of a proximal tubule cell on sodium transport.
Am J Physiol Renal Physiol. 2018 Sep 1;315(3):F665-F676. doi: 10.1152/ajprenal.00008.2018. Epub 2018 Mar 14.

本文引用的文献

1
A computational model for simulating solute transport and oxygen consumption along the nephrons.
Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1378-F1390. doi: 10.1152/ajprenal.00293.2016. Epub 2016 Oct 5.
2
Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron.
Am J Physiol Renal Physiol. 2016 Jun 1;310(11):F1269-83. doi: 10.1152/ajprenal.00543.2015. Epub 2016 Jan 13.
3
Cell volume control in three dimensions: Water movement without solute movement.
J Gen Physiol. 2015 May;145(5):373-80. doi: 10.1085/jgp.201411297. Epub 2015 Apr 13.
4
Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition.
Am J Physiol Renal Physiol. 2015 Jun 15;308(12):F1343-57. doi: 10.1152/ajprenal.00007.2015. Epub 2015 Apr 8.
5
Regulatory volume decrease of rat kidney principal cells after successive hypo-osmotic shocks.
Math Biosci. 2013 Aug;244(2):176-87. doi: 10.1016/j.mbs.2013.05.007. Epub 2013 May 31.
6
The cytoplasm of living cells behaves as a poroelastic material.
Nat Mater. 2013 Mar;12(3):253-61. doi: 10.1038/nmat3517. Epub 2013 Jan 6.
7
Modeling proximal tubule cell homeostasis: tracking changes in luminal flow.
Bull Math Biol. 2009 Aug;71(6):1285-322. doi: 10.1007/s11538-009-9402-1. Epub 2009 Mar 12.
8
Physiology of cell volume regulation in vertebrates.
Physiol Rev. 2009 Jan;89(1):193-277. doi: 10.1152/physrev.00037.2007.
9
Modeling epithelial cell homeostasis: steady-state analysis.
Bull Math Biol. 1999 Nov;61(6):1065-91. doi: 10.1006/bulm.1999.0127.
10
Flow-dependent transport in a mathematical model of rat proximal tubule.
Am J Physiol Renal Physiol. 2007 Apr;292(4):F1164-81. doi: 10.1152/ajprenal.00392.2006. Epub 2007 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验