Stadlmann Johannes, Taubenschmid Jasmin, Wenzel Daniel, Gattinger Anna, Dürnberger Gerhard, Dusberger Frederico, Elling Ulrich, Mach Lukas, Mechtler Karl, Penninger Josef M
IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, A-1030 Vienna, Austria.
Institute of Molecular Pathology (IMP), Dr. Bohr Gasse 7, A-1030 Vienna, Austria.
Nature. 2017 Sep 28;549(7673):538-542. doi: 10.1038/nature24015. Epub 2017 Sep 20.
Glycosylation, the covalent attachment of carbohydrate structures onto proteins, is the most abundant post-translational modification. Over 50% of human proteins are glycosylated, which alters their activities in diverse fundamental biological processes. Despite the importance of glycosylation in biology, the identification and functional validation of complex glycoproteins has remained largely unexplored. Here we develop a novel quantitative approach to identify intact glycopeptides from comparative proteomic data sets, allowing us not only to infer complex glycan structures but also to directly map them to sites within the associated proteins at the proteome scale. We apply this method to human and mouse embryonic stem cells to illuminate the stem cell glycoproteome. This analysis nearly doubles the number of experimentally confirmed glycoproteins, identifies previously unknown glycosylation sites and multiple glycosylated stemness factors, and uncovers evolutionarily conserved as well as species-specific glycoproteins in embryonic stem cells. The specificity of our method is confirmed using sister stem cells carrying repairable mutations in enzymes required for fucosylation, Fut9 and Slc35c1. Ablation of fucosylation confers resistance to the bioweapon ricin, and we discover proteins that carry a fucosylation-dependent sugar code for ricin toxicity. Mutations disrupting a subset of these proteins render cells ricin resistant, revealing new players that orchestrate ricin toxicity. Our comparative glycoproteomics platform, SugarQb, enables genome-wide insights into protein glycosylation and glycan modifications in complex biological systems.
糖基化是指碳水化合物结构与蛋白质的共价连接,是最丰富的翻译后修饰。超过50%的人类蛋白质发生糖基化,这改变了它们在各种基本生物学过程中的活性。尽管糖基化在生物学中很重要,但复杂糖蛋白的鉴定和功能验证在很大程度上仍未得到探索。在这里,我们开发了一种新的定量方法,从比较蛋白质组数据集识别完整的糖肽,这不仅使我们能够推断复杂的聚糖结构,还能在蛋白质组规模上将它们直接映射到相关蛋白质中的位点。我们将此方法应用于人和小鼠胚胎干细胞,以阐明干细胞糖蛋白质组。该分析使实验确认的糖蛋白数量几乎增加了一倍,识别出以前未知的糖基化位点和多种糖基化的干性因子,并揭示了胚胎干细胞中进化保守以及物种特异性的糖蛋白。我们使用在岩藻糖基化所需酶Fut9和Slc35c1中携带可修复突变的姐妹干细胞,证实了我们方法的特异性。岩藻糖基化的缺失赋予了对生物武器蓖麻毒素的抗性,并且我们发现了携带蓖麻毒素毒性的岩藻糖基化依赖性糖代码的蛋白质。破坏这些蛋白质子集的突变使细胞对蓖麻毒素具有抗性,揭示了协调蓖麻毒素毒性的新参与者。我们的比较糖蛋白质组学平台SugarQb能够在全基因组范围内洞察复杂生物系统中的蛋白质糖基化和聚糖修饰。