Suppr超能文献

NetMHCpan-4.0:整合洗脱配体和肽结合亲和力数据的改进的肽与主要组织相容性复合体I类相互作用预测

NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data.

作者信息

Jurtz Vanessa, Paul Sinu, Andreatta Massimo, Marcatili Paolo, Peters Bjoern, Nielsen Morten

机构信息

Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Lyngby, Denmark.

Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and.

出版信息

J Immunol. 2017 Nov 1;199(9):3360-3368. doi: 10.4049/jimmunol.1700893. Epub 2017 Oct 4.

Abstract

Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes.

摘要

细胞毒性T细胞在免疫系统对疾病的反应中至关重要。它们通过与MHC I类分子呈递在细胞表面的肽段结合来识别缺陷细胞。肽段与MHC分子的结合是抗原呈递途径中最具选择性的单一步骤。因此,在寻找T细胞表位的过程中,预测肽段与MHC分子的结合受到了广泛关注。过去,肽段与MHC相互作用的预测器主要是基于结合亲和力数据进行训练的。最近,越来越多通过质谱鉴定的MHC呈递肽段被报道,这些肽段包含了呈递途径中肽段加工步骤以及天然呈递肽段长度分布的信息。在本文中,我们介绍了NetMHCpan-4.0,这是一种基于结合亲和力和洗脱配体数据进行训练的方法,利用了这两种数据类型的信息。该方法的大规模基准测试表明,在识别天然加工的配体、癌症新抗原和T细胞表位方面,与现有最先进的方法相比,其预测性能有所提高。

相似文献

1
NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data.
J Immunol. 2017 Nov 1;199(9):3360-3368. doi: 10.4049/jimmunol.1700893. Epub 2017 Oct 4.
2
Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
PLoS Comput Biol. 2018 Nov 8;14(11):e1006457. doi: 10.1371/journal.pcbi.1006457. eCollection 2018 Nov.
6
Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands.
Front Immunol. 2018 Aug 6;9:1795. doi: 10.3389/fimmu.2018.01795. eCollection 2018.
7
NetMHCpan, a method for MHC class I binding prediction beyond humans.
Immunogenetics. 2009 Jan;61(1):1-13. doi: 10.1007/s00251-008-0341-z. Epub 2008 Nov 12.
8
Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods.
Bioinformatics. 2009 Jan 1;25(1):83-9. doi: 10.1093/bioinformatics/btn579. Epub 2008 Nov 7.
9
Improved peptide-MHC class II interaction prediction through integration of eluted ligand and peptide affinity data.
Immunogenetics. 2019 Jul;71(7):445-454. doi: 10.1007/s00251-019-01122-z. Epub 2019 Jun 10.

引用本文的文献

4
Identification of neoantigen epitopes in cervical cancer by multi-omics analysis.
Eur J Med Res. 2025 Aug 18;30(1):763. doi: 10.1186/s40001-025-03036-x.
5
Population-scale sequencing resolves correlates and determinants of latent Epstein-Barr Virus infection.
bioRxiv. 2025 Jul 18:2025.07.18.665549. doi: 10.1101/2025.07.18.665549.
6
Neoantigen load as a predictor of relapse in early-stage NSCLC: features that agonise and antagonise prognosis.
Cancer Immunol Immunother. 2025 Aug 6;74(9):285. doi: 10.1007/s00262-025-04131-y.
10
Reversing the "cold" tumor microenvironment: the role of neoantigen vaccines in prostate cancer.
J Transl Med. 2025 Jul 25;23(1):835. doi: 10.1186/s12967-025-06867-8.

本文引用的文献

1
Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity.
PLoS Comput Biol. 2017 Aug 23;13(8):e1005725. doi: 10.1371/journal.pcbi.1005725. eCollection 2017 Aug.
2
MuPeXI: prediction of neo-epitopes from tumor sequencing data.
Cancer Immunol Immunother. 2017 Sep;66(9):1123-1130. doi: 10.1007/s00262-017-2001-3. Epub 2017 Apr 20.
4
GibbsCluster: unsupervised clustering and alignment of peptide sequences.
Nucleic Acids Res. 2017 Jul 3;45(W1):W458-W463. doi: 10.1093/nar/gkx248.
5
MHC-I Ligand Discovery Using Targeted Database Searches of Mass Spectrometry Data: Implications for T-Cell Immunotherapies.
J Proteome Res. 2017 Apr 7;16(4):1806-1816. doi: 10.1021/acs.jproteome.6b00971. Epub 2017 Mar 21.
7
The problem with neoantigen prediction.
Nat Biotechnol. 2017 Feb 8;35(2):97. doi: 10.1038/nbt.3800.
9
MHC class I-associated peptides derive from selective regions of the human genome.
J Clin Invest. 2016 Dec 1;126(12):4690-4701. doi: 10.1172/JCI88590. Epub 2016 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验