Al-Masni M A, Al-Antari M A, Park J M, Gi G, Kim T Y, Rivera P, Valarezo E, Han S-M, Kim T-S
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1230-1233. doi: 10.1109/EMBC.2017.8037053.
Automatic detection and classification of the masses in mammograms are still a big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose a novel computer-aided diagnose (CAD) system based on one of the regional deep learning techniques: a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Our proposed YOLO-based CAD system contains four main stages: mammograms preprocessing, feature extraction utilizing multi convolutional deep layers, mass detection with confidence model, and finally mass classification using fully connected neural network (FC-NN). A set of training mammograms with the information of ROI masses and their types are used to train YOLO. The trained YOLO-based CAD system detects the masses and classifies their types into benign or malignant. Our results show that the proposed YOLO-based CAD system detects the mass location with an overall accuracy of 96.33%. The system also distinguishes between benign and malignant lesions with an overall accuracy of 85.52%. Our proposed system seems to be feasible as a CAD system capable of detection and classification at the same time. It also overcomes some challenging breast cancer cases such as the mass existing in the pectoral muscles or dense regions.
乳腺钼靶片中肿块的自动检测和分类仍然是一个巨大的挑战,并且在辅助放射科医生进行准确诊断方面发挥着关键作用。在本文中,我们基于一种区域深度学习技术提出了一种新颖的计算机辅助诊断(CAD)系统:一种基于感兴趣区域(ROI)的卷积神经网络(CNN),称为You Only Look Once(YOLO)。我们提出的基于YOLO的CAD系统包含四个主要阶段:乳腺钼靶片预处理、利用多个卷积深层进行特征提取、使用置信度模型进行肿块检测,以及最后使用全连接神经网络(FC-NN)进行肿块分类。一组带有ROI肿块信息及其类型的训练乳腺钼靶片用于训练YOLO。经过训练的基于YOLO的CAD系统检测肿块并将其类型分类为良性或恶性。我们的结果表明,所提出的基于YOLO的CAD系统检测肿块位置的总体准确率为96.33%。该系统区分良性和恶性病变的总体准确率为85.52%。我们提出的系统似乎作为一个能够同时进行检测和分类的CAD系统是可行的。它还克服了一些具有挑战性的乳腺癌病例,如存在于胸肌或致密区域的肿块。