Suppr超能文献

厌氧菌的鉴定及药敏试验:临床微生物学的魔方?

Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik's Cube of Clinical Microbiology?

作者信息

Gajdács Márió, Spengler Gabriella, Urbán Edit

机构信息

Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.

Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary.

出版信息

Antibiotics (Basel). 2017 Nov 7;6(4):25. doi: 10.3390/antibiotics6040025.

Abstract

Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria.

摘要

厌氧菌在人类微生物群中发挥着关键作用,并且是许多病理过程中的重要感染因子,在免疫功能正常和免疫功能低下的个体中均如此。它们的分离、培养和正确鉴定与需氧菌的检查有很大不同,尽管新技术(如基质辅助激光解吸/电离飞行时间质谱、全基因组测序)的应用极大地改变了厌氧菌的诊断。过去,这些微生物的抗菌药敏表现出可预测的模式,可以安全地进行经验性治疗,但最近在全球范围内观察到几种重要药物(β-内酰胺类、克林霉素)的耐药性稳步且明显增加。因此,出于监测目的或其他原因对厌氧菌分离株进行抗菌药敏试验至关重要,但这些检测方法的可用性通常有限。在本综述中,我们的目的是概述目前可用于厌氧菌鉴定(使用表型特征、生化检测、气-液色谱、基质辅助激光解吸/电离飞行时间质谱和全基因组测序)和抗菌药敏试验(琼脂稀释法、肉汤微量稀释法、纸片扩散法、梯度试验、自动化系统、表型和分子耐药性检测技术)的方法,何时应使用这些方法,以及厌氧菌耐药模式的最新进展。

相似文献

7
Phenotypic and Genotypic Correlation of Antimicrobial Susceptibility of Bacteroides fragilis: Lessons Learnt.
Cureus. 2023 Mar 16;15(3):e36268. doi: 10.7759/cureus.36268. eCollection 2023 Mar.

引用本文的文献

2
Molecular profiling of antibiotic resistance genes in acute and chronic irreversible pulpitis: A cross-sectional study.
J Conserv Dent Endod. 2025 Aug;28(8):814-820. doi: 10.4103/JCDE.JCDE_311_25. Epub 2025 Aug 1.
3
The Role of in the Etiopathogenesis of Sarcoidosis: Current Insights and Future Study Directions.
Int J Mol Sci. 2025 Jul 11;26(14):6652. doi: 10.3390/ijms26146652.
4
Antibiotic resistance rates in isolated from patients with acne vulgaris: a systematic review and meta-analysis.
Front Microbiol. 2025 Jun 4;16:1565111. doi: 10.3389/fmicb.2025.1565111. eCollection 2025.
5
Co-Colonization of Non- Clostridial Species in Antibiotic-Associated Diarrhea Caused by .
Antibiotics (Basel). 2025 Apr 11;14(4):397. doi: 10.3390/antibiotics14040397.
6
Engineered Lysin-Derived Peptide as a Potent Antimicrobial for Acne Vulgaris.
Antibiotics (Basel). 2025 Mar 27;14(4):344. doi: 10.3390/antibiotics14040344.
7
Food, Health, and Environmental Impact of Lactic Acid Bacteria: The Superbacteria for Posterity.
Probiotics Antimicrob Proteins. 2025 Apr 28. doi: 10.1007/s12602-025-10546-x.
8
Advances in gut microbiota functions in inflammatory bowel disease: Dysbiosis, management, cytotoxicity assessment, and therapeutic perspectives.
Comput Struct Biotechnol J. 2025 Feb 25;27:851-868. doi: 10.1016/j.csbj.2025.02.026. eCollection 2025.
9
Live Biotherapeutic Products for Metabolic Diseases: Development Strategies, Challenges, and Future Directions.
J Microbiol Biotechnol. 2025 Mar 11;35:e2410054. doi: 10.4014/jmb.2410.10054.
10
The antimicrobial activity of linezolid against unconventional pathogens.
PeerJ. 2025 Feb 12;13:e18825. doi: 10.7717/peerj.18825. eCollection 2025.

本文引用的文献

1
Microbiota-gut-brain axis and the central nervous system.
Oncotarget. 2017 May 10;8(32):53829-53838. doi: 10.18632/oncotarget.17754. eCollection 2017 Aug 8.
2
"I Am I and My Bacterial Circumstances": Linking Gut Microbiome, Neurodevelopment, and Depression.
Front Psychiatry. 2017 Aug 22;8:153. doi: 10.3389/fpsyt.2017.00153. eCollection 2017.
3
Gut microbiome in ADHD and its relation to neural reward anticipation.
PLoS One. 2017 Sep 1;12(9):e0183509. doi: 10.1371/journal.pone.0183509. eCollection 2017.
4
A multi-center ring trial for the identification of anaerobic bacteria using MALDI-TOF MS.
Anaerobe. 2017 Dec;48:94-97. doi: 10.1016/j.anaerobe.2017.07.004. Epub 2017 Aug 7.
6
Obesity and microbiota: an example of an intricate relationship.
Genes Nutr. 2017 Jun 15;12:18. doi: 10.1186/s12263-017-0566-2. eCollection 2017.
7
Reference standards for next-generation sequencing.
Nat Rev Genet. 2017 Aug;18(8):473-484. doi: 10.1038/nrg.2017.44. Epub 2017 Jun 19.
9
Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing.
J Clin Microbiol. 2017 Jul;55(7):1998-2008. doi: 10.1128/JCM.02250-16. Epub 2017 Apr 12.
10
Kineothrix alysoides, gen. nov., sp. nov., a saccharolytic butyrate-producer within the family Lachnospiraceae.
Int J Syst Evol Microbiol. 2017 Feb;67(2):402-410. doi: 10.1099/ijsem.0.001643.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验