López-Oliva María Elvira, Garcimartin Alba, Muñoz-Martínez Emilia
1Sección Departamental de Fisiología, Facultad de Farmacia,Universidad Complutense de Madrid,28040 Madrid,Spain.
2Departamento de Farmacología, Facultad de Farmacia,Universidad Complutense,28040 Madrid,Spain.
Br J Nutr. 2017 Dec;118(11):914-929. doi: 10.1017/S000711451700232X. Epub 2017 Nov 27.
The effect and the role played by dietary α-lactalbumin (α-LAC) on hepatic fat metabolism are yet to be fully elucidated. We reported previously that α-LAC intake induced atherogenic dyslipidaemia in Balb/c mice. The aim of the present study was to investigate if this atherogenic effect could be due to a possible α-LAC-induced hepatic steatosis. We examine the ability of dietary α-LAC to induce liver steatosis, identifying the molecular mechanisms underlying hepatic lipid metabolism in association with the lipid profile, peripheral insulin resistance (IR) and changes in the hepatic oxidative environment. Male Balb/c mice (n 6) were fed with diets containing either chow or 14 % α-LAC for 4 weeks. The α-LAC-fed mice developed abdominal adiposity and IR. Moderate liver steatosis with increased TAG and NEFA contents was correlated with atherogenic dyslipidaemia. There was increased nuclear expression of liver X receptor αβ (LXRαβ), sterol regulatory element-binding protein-1c (SREBP-1c) and PPARγ transcription factors and of the cytosolic enzymes acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase involved in the hepatic de novo lipogenesis. The opposite was found for the nuclear receptor PPARα and the mitochondrial enzyme carnitine palmitoyltransferase-1 (CPT-1), leading to reduced fatty acid β-oxidation (FAO). These changes were associated with a significant decrease in both p-Thr172-AMP-activated protein kinase α (AMPKα) (inactivation) and p-Ser79-ACC1 (activation) and with a more oxidative liver environment increasing lipid peroxidation and protein oxidation and reducing GSH:GSSG ratio in the α-LAC-fed mice. In conclusion, 4 weeks of 14 % α-LAC feeding induced liver steatosis associated with atherogenic dyslipidaemia, IR and oxidative stress by enhancing nuclear LXRαβ/SREBP-1c/PPARγ expression and diminishing PPARα/CPT-1 expression and AMPKα phosphorylation shifting the hepatic FAO toward fatty acid synthesis in Balb/c mice.
膳食α-乳白蛋白(α-LAC)对肝脏脂肪代谢的影响及作用尚未完全阐明。我们之前报道过,摄入α-LAC会在Balb/c小鼠中诱发致动脉粥样硬化性血脂异常。本研究的目的是调查这种致动脉粥样硬化作用是否可能归因于α-LAC诱导的肝脏脂肪变性。我们研究了膳食α-LAC诱导肝脏脂肪变性的能力,确定了与血脂谱、外周胰岛素抵抗(IR)以及肝脏氧化环境变化相关的肝脏脂质代谢的分子机制。雄性Balb/c小鼠(n = 6)喂食含普通饲料或14%α-LAC的饲料4周。喂食α-LAC的小鼠出现腹部肥胖和IR。伴有甘油三酯(TAG)和非酯化脂肪酸(NEFA)含量增加的中度肝脏脂肪变性与致动脉粥样硬化性血脂异常相关。肝脏X受体αβ(LXRαβ)、固醇调节元件结合蛋白-1c(SREBP-1c)和PPARγ转录因子以及参与肝脏从头脂肪生成的胞质酶乙酰辅酶A羧化酶1(ACC1)和脂肪酸合酶的核表达增加。核受体PPARα和线粒体酶肉碱棕榈酰转移酶-1(CPT-1)则相反,导致脂肪酸β-氧化(FAO)减少。这些变化与p-苏氨酸172-AMP激活蛋白激酶α(AMPKα)(失活)和p-丝氨酸79-ACC1(激活)的显著降低相关,并且与喂食α-LAC的小鼠肝脏氧化环境增强有关,后者增加了脂质过氧化和蛋白质氧化,并降低了谷胱甘肽(GSH)与氧化型谷胱甘肽(GSSG)的比率。总之,4周喂食14%α-LAC通过增强核LXRαβ/SREBP-1c/PPARγ表达并减少PPARα/CPT-1表达以及AMPKα磷酸化,使Balb/c小鼠肝脏的FAO向脂肪酸合成转变,从而诱导了与致动脉粥样硬化性血脂异常、IR和氧化应激相关的肝脏脂肪变性。