Suppr超能文献

特征性miRNA表达特征及随机森林生存分析确定了多种头颈鳞状细胞癌亚型中的潜在致癌miRNA。

Characteristic miRNA expression signature and random forest survival analysis identify potential cancer-driving miRNAs in a broad range of head and neck squamous cell carcinoma subtypes.

作者信息

Nunez Lopez Yury O, Victoria Berta, Golusinski Pawel, Golusinski Wojciech, Masternak Michal M

机构信息

Translational Research Institute for Metabolism & Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA.

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA.

出版信息

Rep Pract Oncol Radiother. 2018 Jan-Feb;23(1):6-20. doi: 10.1016/j.rpor.2017.10.003. Epub 2017 Nov 20.

Abstract

AIM

To characterize the miRNA expression profile in head and neck squamous cell carcinoma (HNSSC) accounting for a broad range of cancer subtypes and consequently identify an optimal miRNA signature with prognostic value.

BACKGROUND

HNSCC is consistently among the most common cancers worldwide. Its mortality rate is about 50% because of the characteristic aggressive behavior of these cancers and the prevalent late diagnosis. The heterogeneity of the disease has hampered the development of robust prognostic tools with broad clinical utility.

MATERIALS AND METHODS

The Cancer Genome Atlas HNSC dataset was used to analyze level 3 miRNA-Seq data from 497 HNSCC patients. Differential expression (DE) analysis was implemented using the package and multivariate linear model that adjusted for the confounding effects of age at diagnosis, gender, race, alcohol history, anatomic neoplasm subdivision, pathologic stage, T and N stages, and vital status. Random forest (RF) for survival analysis was implemented using the package.

RESULTS

A characteristic DE miRNA signature of HNSCC, comprised of 11 upregulated (i.e., miR-196b-5p, miR-1269a, miR-196a-5p, miR-4652-3p, miR-210-3p, miR-1293, miR-615-3p, miR-503-5p, miR-455-3p, miR-205-5p, and miR-21-5p) and 9 downregulated (miR-376c-3p, miR-378c, miR-29c-3p, miR-101-3p, miR-195-5p, miR-299-5p, miR-139-5p, miR-6510-3p, miR-375) miRNAs was identified. An optimal RF survival model was built from seven variables including age at diagnosis, miR-378c, miR-6510-3p, stage N, pathologic stage, gender, and race (listed in order of variable importance).

CONCLUSIONS

The joint differential miRNA expression and survival analysis controlling for multiple confounding covariates implemented in this study allowed for the identification of a previously undetected prognostic miRNA signature characteristic of a broad range of HNSCC.

摘要

目的

描述涵盖广泛癌症亚型的头颈部鳞状细胞癌(HNSSC)中的微小RNA(miRNA)表达谱,从而确定具有预后价值的最佳miRNA特征。

背景

头颈部鳞状细胞癌一直是全球最常见的癌症之一。由于这些癌症具有侵袭性特征且普遍诊断较晚,其死亡率约为50%。该疾病的异质性阻碍了具有广泛临床应用价值的可靠预后工具的开发。

材料与方法

使用癌症基因组图谱头颈部鳞状细胞癌数据集分析来自497名头颈部鳞状细胞癌患者的3级miRNA测序数据。使用该软件包和多变量线性模型进行差异表达(DE)分析,该模型针对诊断时年龄、性别、种族、饮酒史、肿瘤解剖细分、病理分期、T和N分期以及生存状态的混杂效应进行了调整。使用该软件包进行随机森林(RF)生存分析。

结果

确定了头颈部鳞状细胞癌的一个特征性DE miRNA特征,由11个上调(即miR-196b-5p、miR-1269a、miR-196a-5p、miR-4652-3p、miR-210-3p、miR-1293、miR-615-3p、miR-503-5p、miR-455-3p、miR-205-5p和miR-21-5p)和9个下调(miR-376c-3p、miR-378c、miR-29c-3p、miR-101-3p、miR-195-5p、miR-299-5p、miR-139-5p、miR-6510-3p、miR-375)的miRNA组成。从包括诊断时年龄、miR-378c、miR-6510-3p、N分期、病理分期、性别和种族(按变量重要性顺序列出)的七个变量构建了一个最佳RF生存模型。

结论

本研究中实施的联合差异miRNA表达和生存分析,同时控制了多个混杂协变量,从而能够识别出一种先前未被发现的、广泛的头颈部鳞状细胞癌特征性预后miRNA特征。

相似文献

2
Antitumor miR-150-5p and miR-150-3p inhibit cancer cell aggressiveness by targeting SPOCK1 in head and neck squamous cell carcinoma.
Auris Nasus Larynx. 2018 Aug;45(4):854-865. doi: 10.1016/j.anl.2017.11.019. Epub 2017 Dec 9.
3
A Panel of MicroRNA Signature as a Tool for Predicting Survival of Patients with Urothelial Carcinoma of the Bladder.
Dis Markers. 2018 Jun 20;2018:5468672. doi: 10.1155/2018/5468672. eCollection 2018.
5
Survival associated miRNA signature in patients with head and neck carcinomas.
Heliyon. 2023 Jun 12;9(6):e17218. doi: 10.1016/j.heliyon.2023.e17218. eCollection 2023 Jun.
9
Prognostic microRNA signatures derived from The Cancer Genome Atlas for head and neck squamous cell carcinomas.
Cancer Med. 2016 Jul;5(7):1619-28. doi: 10.1002/cam4.718. Epub 2016 Apr 25.

引用本文的文献

1
MiR-1293 modulates PPARGC1A to promote proliferation and metastasis of oral carcinoma cells.
J Mol Histol. 2025 Jun 5;56(3):188. doi: 10.1007/s10735-025-10474-8.
2
Single-Cell RNA-Seq Recognized Key Genes for Metastasis and Macrophage Infiltration in Colorectal Cancer.
Hum Mutat. 2025 May 15;2025:9488531. doi: 10.1155/humu/9488531. eCollection 2025.
3
The microRNA-6510 as a potential tumor suppressor in head and neck cancer.
Sci Rep. 2025 Feb 18;15(1):5830. doi: 10.1038/s41598-025-86796-0.
5
Integrated analysis of single-cell RNA-seq and bulk RNA-seq revealed key genes for bone metastasis and chemoresistance in prostate cancer.
Genes Genomics. 2024 Dec;46(12):1445-1460. doi: 10.1007/s13258-024-01575-x. Epub 2024 Oct 12.
6
Clinical and therapeutical significances of the cluster and signature based on oxidative stress for osteosarcoma.
Aging (Albany NY). 2023 Dec 29;15(24):15360-15381. doi: 10.18632/aging.205354.
8
In Silico Analysis of MicroRNA Expression Data in Liver Cancer.
Cancer Inform. 2023 May 10;22:11769351231171743. doi: 10.1177/11769351231171743. eCollection 2023.
9

本文引用的文献

1
Non-coding RNAs profiling in head and neck cancers.
NPJ Genom Med. 2016 Jan 13;1:15004. doi: 10.1038/npjgenmed.2015.4. eCollection 2016.
2
Distinct prognostic values of alcohol dehydrogenase mRNA expression in pancreatic adenocarcinoma.
Onco Targets Ther. 2017 Jul 24;10:3719-3732. doi: 10.2147/OTT.S140221. eCollection 2017.
3
Integrative analysis of mRNA and miRNA expression profiles in oral lichen planus: preliminary results.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2017 Oct;124(4):390-402.e17. doi: 10.1016/j.oooo.2017.05.513. Epub 2017 Jun 8.
4
Tumor-like microenvironment in oral lichen planus: evidence of malignant transformation?
Expert Rev Clin Immunol. 2017 Jun;13(6):635-643. doi: 10.1080/1744666X.2017.1295852. Epub 2017 Feb 28.
5
Malignant transformation of oral lichen planus and oral lichenoid lesions: A meta-analysis of 20095 patient data.
Oral Oncol. 2017 May;68:92-102. doi: 10.1016/j.oraloncology.2017.03.012. Epub 2017 Apr 5.
6
Avoiding the pitfalls of gene set enrichment analysis with SetRank.
BMC Bioinformatics. 2017 Mar 4;18(1):151. doi: 10.1186/s12859-017-1571-6.
7
miR-503-3p promotes epithelial-mesenchymal transition in breast cancer by directly targeting SMAD2 and E-cadherin.
J Genet Genomics. 2017 Feb 20;44(2):75-84. doi: 10.1016/j.jgg.2016.10.005. Epub 2016 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验