Department of Mathematics, The University of Auckland, Level 2, Building 303, 38 Princes Street, Auckland CBD, New Zealand.
Departamento de Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile.
Bull Math Biol. 2018 Feb;80(2):255-282. doi: 10.1007/s11538-017-0370-6. Epub 2017 Dec 5.
We develop a mathematical model of a salivary gland acinar cell with the objective of investigating the role of two [Formula: see text] exchangers from the solute carrier family 4 (Slc4), Ae2 (Slc4a2) and Ae4 (Slc4a9), in fluid secretion. Water transport in this type of cell is predominantly driven by [Formula: see text] movement. Here, a basolateral [Formula: see text] adenosine triphosphatase pump (NaK-ATPase) and a [Formula: see text]-[Formula: see text]-[Formula: see text] cotransporter (Nkcc1) are primarily responsible for concentrating the intracellular space with [Formula: see text] well above its equilibrium potential. Gustatory and olfactory stimuli induce the release of [Formula: see text] ions from the internal stores of acinar cells, which triggers saliva secretion. [Formula: see text]-dependent [Formula: see text] and [Formula: see text] channels promote ion secretion into the luminal space, thus creating an osmotic gradient that promotes water movement in the secretory direction. The current model for saliva secretion proposes that [Formula: see text] anion exchangers (Ae), coupled with a basolateral [Formula: see text] ([Formula: see text]) (Nhe1) antiporter, regulate intracellular pH and act as a secondary [Formula: see text] uptake mechanism (Nauntofte in Am J Physiol Gastrointest Liver Physiol 263(6):G823-G837, 1992; Melvin et al. in Annu Rev Physiol 67:445-469, 2005. https://doi.org/10.1146/annurev.physiol.67.041703.084745 ). Recent studies demonstrated that Ae4 deficient mice exhibit an approximate [Formula: see text] decrease in gland salivation (Peña-Münzenmayer et al. in J Biol Chem 290(17):10677-10688, 2015). Surprisingly, the same study revealed that absence of Ae2 does not impair salivation, as previously suggested. These results seem to indicate that the Ae4 may be responsible for the majority of the secondary [Formula: see text] uptake and thus a key mechanism for saliva secretion. Here, by using 'in-silico' Ae2 and Ae4 knockout simulations, we produced mathematical support for such controversial findings. Our results suggest that the exchanger's cotransport of monovalent cations is likely to be important in establishing the osmotic gradient necessary for optimal transepithelial fluid movement.
我们构建了一个唾液腺腺泡细胞的数学模型,旨在研究溶质载体家族 4(Slc4)中的两种[Formula: see text]交换器(Ae2(Slc4a2)和 Ae4(Slc4a9))在液体分泌中的作用。这种类型的细胞中的水转运主要由[Formula: see text]运动驱动。在这里,基底外侧[Formula: see text]三磷酸腺苷酶泵(NaK-ATPase)和[Formula: see text]-[Formula: see text]-[Formula: see text]共转运蛋白(Nkcc1)主要负责使细胞内空间充满[Formula: see text],使其远高于其平衡电位。味觉和嗅觉刺激会从腺泡细胞的内部储存中释放[Formula: see text]离子,从而引发唾液分泌。[Formula: see text]依赖性[Formula: see text]和[Formula: see text]通道促进离子分泌到腔室空间,从而在分泌方向上产生渗透梯度,促进水的运动。目前的唾液分泌模型提出,[Formula: see text]阴离子交换器(Ae)与基底外侧[Formula: see text]([Formula: see text])(Nhe1)反向转运蛋白一起,调节细胞内 pH 值并充当次级[Formula: see text]摄取机制(Nauntofte 在 Am J Physiol Gastrointest Liver Physiol 263(6):G823-G837, 1992;Melvin 等人在 Annu Rev Physiol 67:445-469, 2005. https://doi.org/10.1146/annurev.physiol.67.041703.084745 )。最近的研究表明,Ae4 缺乏的小鼠的腺体唾液分泌减少了约[Formula: see text](Peña-Münzenmayer 等人在 J Biol Chem 290(17):10677-10688, 2015)。令人惊讶的是,同一研究表明,Ae2 的缺失并不像以前那样损害唾液分泌。这些结果似乎表明,Ae4 可能负责大部分次级[Formula: see text]摄取,因此是唾液分泌的关键机制。在这里,我们通过使用“计算机模拟”的 Ae2 和 Ae4 敲除模拟,为这些有争议的发现提供了数学支持。我们的结果表明,交换器的单价阳离子共转运可能对于建立最佳跨上皮液体运动所需的渗透梯度很重要。