Suppr超能文献

基于有限元分析的单晶ZnO纳米螺旋中的压电势

Piezoelectric Potential in Single-Crystalline ZnO Nanohelices Based on Finite Element Analysis.

作者信息

Hao Huimin, Jenkins Kory, Huang Xiaowen, Xu Yiqian, Huang Jiahai, Yang Rusen

机构信息

Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China.

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Nanomaterials (Basel). 2017 Dec 7;7(12):430. doi: 10.3390/nano7120430.

Abstract

Electric potential produced in deformed piezoelectric nanostructures is of significance for both fundamental study and practical applications. To reveal the piezoelectric property of ZnO nanohelices, the piezoelectric potential in single-crystal nanohelices was simulated by finite element method calculations. For a nanohelix with a length of 1200 nm, a mean coil radius of 150 nm, five active coils, and a hexagonal coiled wire with a side length 100 nm, a compressing force of 100 nN results in a potential of 1.85 V. This potential is significantly higher than the potential produced in a straight nanowire with the same length and applied force. Maintaining the length and increasing the number of coils or mean coil radius leads to higher piezoelectric potential in the nanohelix. Appling a force along the axial direction produces higher piezoelectric potential than in other directions. Adding lateral forces to an existing axial force can change the piezoelectric potential distribution in the nanohelix, while the maximum piezoelectric potential remains largely unchanged in some cases. This research demonstrates the promising potential of ZnO nanohelices for applications in sensors, micro-electromechanical systems (MEMS) devices, nanorobotics, and energy sciences.

摘要

变形的压电纳米结构中产生的电势对于基础研究和实际应用都具有重要意义。为了揭示ZnO纳米螺旋的压电特性,通过有限元方法计算模拟了单晶纳米螺旋中的压电势。对于长度为1200 nm、平均线圈半径为150 nm、有五个活性线圈且六边形盘绕线边长为100 nm的纳米螺旋,100 nN的压缩力会产生1.85 V的电势。该电势显著高于在相同长度和施加力的直纳米线中产生的电势。保持长度不变并增加线圈数量或平均线圈半径会导致纳米螺旋中产生更高的压电势。沿轴向施加力比在其他方向产生更高的压电势。在现有轴向力上添加横向力可以改变纳米螺旋中的压电势分布,而在某些情况下最大压电势基本保持不变。这项研究证明了ZnO纳米螺旋在传感器、微机电系统(MEMS)器件、纳米机器人和能源科学应用中的广阔前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/624d/5746920/5fa3256491e8/nanomaterials-07-00430-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验