Rankin Scott A, McCracken Kyle W, Luedeke David M, Han Lu, Wells James M, Shannon John M, Zorn Aaron M
Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
Pulmonary Biology, Cincinnati Children's Hospital, and the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
Dev Biol. 2018 Feb 1;434(1):121-132. doi: 10.1016/j.ydbio.2017.11.018. Epub 2017 Dec 5.
A small number of signaling pathways are used repeatedly during organogenesis, and they can have drastically different effects on the same population of cells depending on the embryonic stage. How cellular competence changes over developmental time is not well understood. Here we used Xenopus, mouse, and human pluripotent stem cells to investigate how the temporal sequence of Wnt, BMP, and retinoic acid (RA) signals regulates endoderm developmental competence and organ induction, focusing on respiratory fate. While Nkx2-1+ lung fate is not induced until late somitogenesis stages, here we show that lung competence is restricted by the gastrula stage as a result of Wnt and BMP-dependent anterior-posterior (A-P) patterning. These early Wnt and BMP signals make posterior endoderm refractory to subsequent RA/Wnt/BMP-dependent lung induction. We further mapped how RA modulates the response to Wnt and BMP in a temporal specific manner. In the gastrula RA promotes posterior identity, however in early somite stages of development RA regulates respiratory versus pharyngeal potential in anterior endoderm and midgut versus hindgut potential in posterior endoderm. Together our data suggest a dynamic and conserved response of vertebrate endoderm during organogenesis, wherein early Wnt/BMP/RA impacts how cells respond to later Wnt/BMP/RA signals, illustrating how reiterative combinatorial signaling can regulate both developmental competence and subsequent fate specification.
少数信号通路在器官发生过程中会被反复利用,并且根据胚胎发育阶段的不同,它们对同一群细胞可能会产生截然不同的影响。细胞感受态如何随发育时间变化,目前还不太清楚。在这里,我们利用非洲爪蟾、小鼠和人类多能干细胞,研究Wnt、骨形态发生蛋白(BMP)和视黄酸(RA)信号的时间顺序如何调节内胚层的发育感受态和器官诱导,重点关注呼吸命运。虽然直到体节发生后期才诱导出Nkx2-1+肺命运,但我们在此表明,由于Wnt和BMP依赖的前后(A-P)模式形成,肺感受态在原肠胚阶段就受到了限制。这些早期的Wnt和BMP信号使后端内胚层对随后的RA/Wnt/BMP依赖的肺诱导产生抗性。我们进一步绘制了RA如何以时间特异性方式调节对Wnt和BMP的反应。在原肠胚中,RA促进后端特征,然而在发育的早期体节阶段,RA调节前端内胚层的呼吸与咽的潜能以及后端内胚层的中肠与后肠的潜能。我们的数据共同表明,脊椎动物内胚层在器官发生过程中存在动态且保守的反应,其中早期的Wnt/BMP/RA影响细胞对后期Wnt/BMP/RA信号的反应方式,说明了反复的组合信号传导如何调节发育感受态和随后的命运特化。