Division of Clinical Pharmacology, Vanderbilt Univ Medical Ctr, Nashville, TN, Medical Research Building IV, Rm.1275, 2215B Garland Ave, Nashville, TN 37232, USA.
Division of Cardiovascular Medicine, Vanderbilt Univ Medical Ctr, Nashville, TN, Light Hall 1155A, 2215B Garland Ave, Nashville, TN 37232, USA.
J Mol Cell Cardiol. 2018 Jan;114:320-327. doi: 10.1016/j.yjmcc.2017.12.002. Epub 2017 Dec 5.
Mutations in cardiac troponin T (TnT) are linked to increased risk of ventricular arrhythmia and sudden death despite causing little to no cardiac hypertrophy. Studies in mice suggest that the hypertrophic cardiomyopathy (HCM)-associated TnT-I79N mutation increases myofilament Ca sensitivity and is arrhythmogenic, but whether findings from mice translate to human cardiomyocyte electrophysiology is not known.
To study the effects of the TnT-I79N mutation in human cardiomyocytes.
Using CRISPR/Cas9, the TnT-I79N mutation was introduced into human induced pluripotent stem cells (hiPSCs). We then used the matrigel mattress method to generate single rod-shaped cardiomyocytes (CMs) and studied contractility, Ca handling and electrophysiology.
Compared to isogenic control hiPSC-CMs, TnT-I79N hiPSC-CMs exhibited sarcomere disorganization, increased systolic function and impaired relaxation. The Ca-dependence of contractility was leftward shifted in mutation containing cardiomyocytes, demonstrating increased myofilament Ca sensitivity. In voltage-clamped hiPSC-CMs, TnT-I79N reduced intracellular Ca transients by enhancing cytosolic Ca buffering. These changes in Ca handling resulted in beat-to-beat instability and triangulation of the cardiac action potential, which are predictors of arrhythmia risk. The myofilament Ca sensitizer EMD57033 produced similar action potential triangulation in control hiPSC-CMs.
The TnT-I79N hiPSC-CM model not only reproduces key cellular features of TnT-linked HCM such as myofilament disarray, hypercontractility and diastolic dysfunction, but also suggests that this TnT mutation causes pro-arrhythmic changes of the human ventricular action potential.
尽管肌钙蛋白 T(TnT)突变导致心肌肥厚程度很小或无,但与室性心律失常和猝死风险增加相关。在小鼠中的研究表明,肥厚型心肌病(HCM)相关的 TnT-I79N 突变增加了肌球蛋白丝 Ca 敏感性并具有致心律失常作用,但这种发现是否能转化为人类心肌细胞电生理学尚不清楚。
研究 TnT-I79N 突变在人类心肌细胞中的作用。
使用 CRISPR/Cas9 将 TnT-I79N 突变引入人类诱导多能干细胞(hiPSC)中。然后,我们使用基质胶床垫方法生成单个杆状心肌细胞(CM),并研究收缩性、Ca 处理和电生理学。
与同基因对照 hiPSC-CM 相比,TnT-I79N hiPSC-CM 表现出肌节紊乱、收缩功能增强和舒张功能受损。含有突变的肌球蛋白丝对 Ca 依赖性收缩的依赖性向左偏移,表明肌球蛋白丝 Ca 敏感性增加。在电压钳制的 hiPSC-CM 中,TnT-I79N 通过增强细胞溶质 Ca 缓冲来减少细胞内 Ca 瞬变。这些 Ca 处理的变化导致心脏动作电位的逐搏不稳定性和三角化,这是心律失常风险的预测指标。肌球蛋白丝 Ca 敏化剂 EMD57033 在对照 hiPSC-CM 中也产生了类似的动作电位三角化。
TnT-I79N hiPSC-CM 模型不仅再现了 TnT 相关 HCM 的关键细胞特征,如肌球蛋白丝排列紊乱、高收缩性和舒张功能障碍,还表明这种 TnT 突变导致人类心室动作电位的致心律失常变化。