Department of Computer and Information Science, University of Delaware, Newark, DE 19716, USA.
Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland.
Database (Oxford). 2017 Jan 1;2017. doi: 10.1093/database/bax081.
UniProt Knowledgebase (UniProtKB) is a publicly available database with access to a vast amount of protein sequence and functional information. To widen the scope of the publications associated with a protein entry, UniProt has introduced the computationally mapped additional bibliography section, which includes literature collected from external sources. In this article, we describe a text mining system, eGenPub, which selects articles that are 'about' specific proteins and allows automatic identification of additional bibliography for given UniProt protein entries. Focusing on plant proteins initially, eGenPub utilizes a gene normalization tool called pGenN, and a trained support vector machine model, which achieves a precision of 95.3%, to predict whether an article, based on its abstract, should be linked to a given UniProt entry. We have conducted a full-scale PubMed processing using eGenPub for eight common plant species. Altogether, 9025 articles are identified as relevant bibliography for 4752 UniProt entries, among which 5252 are additional papers not in the existing publication section. These newly computationally mapped additional bibliography via eGenPub is being integrated in the UniProt production pipeline, and can be accessed via the UniProtKB protein entry publication view.
UniProt 知识库(UniProtKB)是一个公开可用的数据库,可获取大量蛋白质序列和功能信息。为了扩大与蛋白质条目相关的出版物的范围,UniProt 引入了计算映射的附加参考文献部分,其中包括从外部来源收集的文献。在本文中,我们描述了一个文本挖掘系统 eGenPub,该系统选择与特定蛋白质“相关”的文章,并允许为给定的 UniProt 蛋白质条目自动识别附加参考文献。最初专注于植物蛋白,eGenPub 利用一种称为 pGenN 的基因标准化工具和经过训练的支持向量机模型,该模型基于其摘要实现了 95.3%的精度,以预测一篇文章是否应链接到给定的 UniProt 条目。我们使用 eGenPub 对八个常见的植物物种进行了全面的 PubMed 处理。总共确定了 9025 篇文章作为 4752 个 UniProt 条目的相关参考文献,其中 5252 篇是现有出版物部分中没有的新增论文。这些通过 eGenPub 新计算映射的附加参考文献正在整合到 UniProt 生产管道中,并可通过 UniProtKB 蛋白质条目出版物视图访问。