Suppr超能文献

通过叠氮-炔环加成进行生物缀合的实际考虑、挑战和局限性。

Practical Considerations, Challenges, and Limitations of Bioconjugation via Azide-Alkyne Cycloaddition.

机构信息

Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States.

Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66047 , United States.

出版信息

Bioconjug Chem. 2018 Mar 21;29(3):686-701. doi: 10.1021/acs.bioconjchem.7b00633. Epub 2018 Feb 1.

Abstract

Interrogating biological systems is often limited by access to biological probes. The emergence of "click chemistry" has revolutionized bioconjugate chemistry by providing facile reaction conditions amenable to both biologic molecules and small molecule probes such as fluorophores, toxins, or therapeutics. One particularly popular version is the copper-catalyzed azide-alkyne cycloaddition (AAC) reaction, which has spawned new alternatives such as the strain-promoted azide-alkyne cycloaddition reaction, among others. This focused review highlights practical approaches to AAC reactions for the synthesis of peptide or protein bioconjugates and contrasts current challenges and limitations in light of recent advances in the field. The conical success of antibody drug conjugates has expanded the toolbox of linkers and payloads to facilitate practical applications of bioconjugation to create novel therapeutics and biologic probes. The AAC reaction in particular is poised to enable a large set of functionalized molecules as a combinatorial approach to high-throughput bioconjugate generation, screening, and honing of lead compounds.

摘要

研究生物系统通常受到生物探针获取的限制。“点击化学”的出现通过提供适用于生物分子和小分子探针(如荧光团、毒素或治疗剂)的简便反应条件,彻底改变了生物缀合化学。一种特别流行的版本是铜催化的叠氮-炔环加成(AAC)反应,它催生了应变促进的叠氮-炔环加成反应等新的替代品。本综述重点介绍了用于合成肽或蛋白质生物缀合物的 AAC 反应的实用方法,并根据该领域的最新进展,对比了当前的挑战和局限性。抗体药物偶联物的成功应用拓展了连接子和有效载荷的工具包,以促进生物缀合在创造新型治疗剂和生物探针方面的实际应用。特别是 AAC 反应有望使一系列功能化分子成为高通量生物缀合生成、筛选和先导化合物优化的组合方法。

相似文献

1
Practical Considerations, Challenges, and Limitations of Bioconjugation via Azide-Alkyne Cycloaddition.
Bioconjug Chem. 2018 Mar 21;29(3):686-701. doi: 10.1021/acs.bioconjchem.7b00633. Epub 2018 Feb 1.
3
A facile preparation of functional cycloalkynes via an azide-to-cycloalkyne switching approach.
Chem Commun (Camb). 2019 Mar 19;55(24):3556-3559. doi: 10.1039/c9cc01113g.
4
CuAAC: An Efficient Click Chemistry Reaction on Solid Phase.
ACS Comb Sci. 2016 Jan 11;18(1):1-14. doi: 10.1021/acscombsci.5b00087. Epub 2015 Dec 21.
5
Cucurbit[6]uril-Promoted Click Chemistry for Protein Modification.
J Am Chem Soc. 2017 Jul 19;139(28):9691-9697. doi: 10.1021/jacs.7b05164. Epub 2017 Jul 7.
6
Copper Catalysis in Living Systems and In Situ Drug Synthesis.
Angew Chem Int Ed Engl. 2016 Dec 12;55(50):15662-15666. doi: 10.1002/anie.201609837. Epub 2016 Nov 15.
7
A Hitchhiker's Guide to Click-Chemistry with Nucleic Acids.
Chem Rev. 2021 Jun 23;121(12):7122-7154. doi: 10.1021/acs.chemrev.0c00928. Epub 2021 Jan 14.

引用本文的文献

2
New Approach to Assembling Nucleic Acid Dendrons on a Solid Phase.
Org Lett. 2025 Aug 29;27(34):9500-9505. doi: 10.1021/acs.orglett.5c02877. Epub 2025 Aug 20.
3
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
4
Residue-Specific Incorporation of Noncanonical Amino Acids in Auxotrophic Hosts:
Chem Rev. 2025 May 28;125(10):4840-4932. doi: 10.1021/acs.chemrev.4c00280. Epub 2025 May 16.
5
Nanoparticle-Mediated Targeted Protein Degradation: An Emerging Therapeutics Technology.
Angew Chem Int Ed Engl. 2025 May 5:e202503958. doi: 10.1002/anie.202503958.
6
Comparative Study of Click Handle Stability in Common Ligation Conditions.
Bioconjug Chem. 2025 May 21;36(5):1054-1065. doi: 10.1021/acs.bioconjchem.5c00095. Epub 2025 Apr 27.
7
Modification of DNA Nanostructures with Functional Peptides Through Copper-Free Click Chemistry.
Methods Mol Biol. 2025;2901:179-189. doi: 10.1007/978-1-0716-4394-5_14.
8
Surface Functionalization of Elastomers with Biopolymers.
Methods Mol Biol. 2025;2902:197-227. doi: 10.1007/978-1-0716-4402-7_13.
9
Bio-orthogonal Glycan Imaging of Cultured Cells and Whole Animal with Expansion Microscopy.
ACS Cent Sci. 2024 Nov 23;11(2):193-207. doi: 10.1021/acscentsci.4c01061. eCollection 2025 Feb 26.

本文引用的文献

1
Construction of homogeneous antibody-drug conjugates using site-selective protein chemistry.
Chem Sci. 2016 May 1;7(5):2954-2963. doi: 10.1039/c6sc00170j. Epub 2016 Feb 12.
3
Targeting the N terminus for site-selective protein modification.
Nat Chem Biol. 2017 Jul;13(7):697-705. doi: 10.1038/nchembio.2416. Epub 2017 Jun 20.
4
Site-specific conjugation of fibroblast growth factor 2 (FGF2) based on incorporation of alkyne-reactive unnatural amino acid.
Bioorg Med Chem. 2017 Jul 15;25(14):3685-3693. doi: 10.1016/j.bmc.2017.05.003. Epub 2017 May 5.
5
Designing Peptide and Protein Modified Hydrogels: Selecting the Optimal Conjugation Strategy.
J Am Chem Soc. 2017 Jun 7;139(22):7416-7427. doi: 10.1021/jacs.7b00513. Epub 2017 May 23.
7
Enabling the controlled assembly of antibody conjugates with a loading of two modules without antibody engineering.
Chem Sci. 2017 Mar 1;8(3):2056-2060. doi: 10.1039/c6sc03655d. Epub 2016 Nov 28.
8
Strategies and challenges for the next generation of antibody-drug conjugates.
Nat Rev Drug Discov. 2017 May;16(5):315-337. doi: 10.1038/nrd.2016.268. Epub 2017 Mar 17.
9
Antisense Oligonucleotides Internally Labeled with Peptides Show Improved Target Recognition and Stability to Enzymatic Degradation.
Bioconjug Chem. 2017 Mar 15;28(3):768-774. doi: 10.1021/acs.bioconjchem.6b00567. Epub 2016 Dec 1.
10
Selective in vivo metabolic cell-labeling-mediated cancer targeting.
Nat Chem Biol. 2017 Apr;13(4):415-424. doi: 10.1038/nchembio.2297. Epub 2017 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验