Suppr超能文献

肿瘤中 T 细胞功能的代谢障碍。

Metabolic Barriers to T Cell Function in Tumors.

机构信息

Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt-Ingram Cancer Center, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232.

Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt-Ingram Cancer Center, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232

出版信息

J Immunol. 2018 Jan 15;200(2):400-407. doi: 10.4049/jimmunol.1701041.

Abstract

The metabolic programs that drive T cell functions are exquisitely sensitive to cell intrinsic and extrinsic factors, allowing T cells to respond in a fine-tuned manner to a variety of immune challenges and conditions. However, many of the factors essential for effector T cell function are perturbed in the tumor microenvironment, where oncogenic mutations drive unrestrained cancer cell growth that leads to excess nutrient consumption, excess waste excretion, and insufficient oxygen delivery. This imposes metabolic constraints on infiltrating cells that result in dysfunction and loss of potential antitumor activity in both naturally occurring as well as tailored T cells introduced as part of immunotherapy. In this review, we highlight the metabolic properties that characterize tumor-infiltrating T cells, the barriers within the metabolic landscape of the tumor microenvironment, and the opportunities and challenges they present in development of new cancer therapeutics.

摘要

驱动 T 细胞功能的代谢程序对细胞内在和外在因素极其敏感,使 T 细胞能够以精细的方式对各种免疫挑战和情况做出反应。然而,在肿瘤微环境中,许多效应 T 细胞功能所必需的因素受到干扰,致癌突变导致不受控制的癌细胞生长,导致营养消耗过多、废物排泄过多和供氧不足。这对浸润细胞施加了代谢限制,导致自然存在的以及作为免疫疗法一部分引入的定制 T 细胞的功能障碍和潜在抗肿瘤活性丧失。在这篇综述中,我们强调了表征浸润肿瘤的 T 细胞的代谢特性、肿瘤微环境代谢景观中的障碍,以及它们在开发新的癌症治疗方法方面带来的机遇和挑战。

相似文献

1
Metabolic Barriers to T Cell Function in Tumors.
J Immunol. 2018 Jan 15;200(2):400-407. doi: 10.4049/jimmunol.1701041.
2
Antitumor T-cell Reconditioning: Improving Metabolic Fitness for Optimal Cancer Immunotherapy.
Clin Cancer Res. 2018 Jun 1;24(11):2473-2481. doi: 10.1158/1078-0432.CCR-17-0894. Epub 2018 Jan 31.
3
Regulatory T cells in cancer; can they be controlled?
Immunotherapy. 2015;7(8):843-6. doi: 10.2217/imt.15.52. Epub 2015 Aug 28.
4
Metabolic reprograming of anti-tumor immunity.
Curr Opin Immunol. 2017 Jun;46:14-22. doi: 10.1016/j.coi.2017.03.011. Epub 2017 Apr 13.
5
T-cell immunometabolism against cancer.
Cancer Lett. 2016 Nov 28;382(2):255-258. doi: 10.1016/j.canlet.2016.09.003. Epub 2016 Sep 21.
6
The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy.
Cancer Discov. 2012 Jul;2(7):608-23. doi: 10.1158/2159-8290.CD-11-0314. Epub 2012 Jun 19.
7
Editorial: Tissue Resident Memory T Cells.
Front Immunol. 2019 May 27;10:1018. doi: 10.3389/fimmu.2019.01018. eCollection 2019.
10
Fundamentals of T Cell Metabolism and Strategies to Enhance Cancer Immunotherapy.
Front Immunol. 2021 Mar 18;12:645242. doi: 10.3389/fimmu.2021.645242. eCollection 2021.

引用本文的文献

1
Pan-cancer analysis and oncogenic implications of and : Toward precision oncology and drug repurposing in colorectal cancer.
J Cell Commun Signal. 2025 Aug 27;19(3):e70042. doi: 10.1002/ccs3.70042. eCollection 2025 Sep.
2
Lipid metabolic reprogramming in colorectal cancer: mechanisms and therapeutic strategies.
Front Immunol. 2025 Jul 11;16:1603032. doi: 10.3389/fimmu.2025.1603032. eCollection 2025.
3
Bi-directional metabolic reprogramming between cancer cells and T cells reshapes the anti-tumor immune response.
PLoS Biol. 2025 Jul 14;23(7):e3003284. doi: 10.1371/journal.pbio.3003284. eCollection 2025 Jul.
4
Development of therapeutic cancer vaccines based on cancer immunity cycle.
Front Med. 2025 Jul 14. doi: 10.1007/s11684-025-1134-6.
5
Metabolism and Immune Suppressive Response in Liver Cancer.
Biomedicines. 2025 Jun 13;13(6):1461. doi: 10.3390/biomedicines13061461.
8
Interactions between the metabolic reprogramming of liver cancer and tumor microenvironment.
Front Immunol. 2025 Feb 14;16:1494788. doi: 10.3389/fimmu.2025.1494788. eCollection 2025.
10
Changes in tumor and cardiac metabolism upon immune checkpoint.
Basic Res Cardiol. 2025 Feb;120(1):133-152. doi: 10.1007/s00395-024-01092-8. Epub 2024 Dec 10.

本文引用的文献

1
Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors.
Cell Metab. 2017 Jul 5;26(1):49-70. doi: 10.1016/j.cmet.2017.06.004.
3
Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments.
Cell Metab. 2017 Jun 6;25(6):1282-1293.e7. doi: 10.1016/j.cmet.2016.12.018. Epub 2017 Apr 13.
4
Foxp3 drives oxidative phosphorylation and protection from lipotoxicity.
JCI Insight. 2017 Feb 9;2(3):e89160. doi: 10.1172/jci.insight.89160.
5
Understanding the Intersections between Metabolism and Cancer Biology.
Cell. 2017 Feb 9;168(4):657-669. doi: 10.1016/j.cell.2016.12.039.
6
Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E761-E770. doi: 10.1073/pnas.1620433114. Epub 2017 Jan 17.
7
CAR T-cell therapy of solid tumors.
Immunol Cell Biol. 2017 Apr;95(4):356-363. doi: 10.1038/icb.2016.128. Epub 2016 Dec 22.
8
Constitutive Glycolytic Metabolism Supports CD8 T Cell Effector Memory Differentiation during Viral Infection.
Immunity. 2016 Nov 15;45(5):1024-1037. doi: 10.1016/j.immuni.2016.10.017. Epub 2016 Nov 8.
9
L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity.
Cell. 2016 Oct 20;167(3):829-842.e13. doi: 10.1016/j.cell.2016.09.031. Epub 2016 Oct 13.
10
Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism.
Science. 2016 Oct 28;354(6311):481-484. doi: 10.1126/science.aaf6284. Epub 2016 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验