Suppr超能文献

慢性肺部疾病(包括 BPD、COPD 和肺纤维化)发病机制中的代谢重编程。

Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis.

机构信息

Department of Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence, Rhode Island.

Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University , Taiyuan, Shanxi , China.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2018 Apr 1;314(4):L544-L554. doi: 10.1152/ajplung.00521.2017. Epub 2018 Jan 4.

Abstract

The metabolism of nutrient substrates, including glucose, glutamine, and fatty acids, provides acetyl-CoA for the tricarboxylic acid cycle to generate energy, as well as metabolites for the biosynthesis of biomolecules, including nucleotides, proteins, and lipids. It has been shown that metabolism of glucose, fatty acid, and glutamine plays important roles in modulating cellular proliferation, differentiation, apoptosis, autophagy, senescence, and inflammatory responses. All of these cellular processes contribute to the pathogenesis of chronic lung diseases, including bronchopulmonary dysplasia, chronic obstructive pulmonary disease, and pulmonary fibrosis. Recent studies demonstrate that metabolic reprogramming occurs in patients with and animal models of chronic lung diseases, suggesting that metabolic dysregulation may participate in the pathogenesis and progression of these diseases. In this review, we briefly discuss the catabolic pathways for glucose, glutamine, and fatty acids, and focus on how metabolic reprogramming of these pathways impacts cellular functions and leads to the development of these chronic lung diseases. We also highlight how targeting metabolic pathways can be utilized in the prevention and treatment of these diseases.

摘要

营养底物(包括葡萄糖、谷氨酰胺和脂肪酸)的代谢为三羧酸循环提供乙酰辅酶 A 以生成能量,以及为生物分子(包括核苷酸、蛋白质和脂质)的生物合成提供代谢物。已经表明,葡萄糖、脂肪酸和谷氨酰胺的代谢在调节细胞增殖、分化、凋亡、自噬、衰老和炎症反应方面发挥着重要作用。所有这些细胞过程都有助于慢性肺部疾病(包括支气管肺发育不良、慢性阻塞性肺疾病和肺纤维化)的发病机制。最近的研究表明,慢性肺部疾病患者和动物模型中存在代谢重编程,提示代谢失调可能参与这些疾病的发病机制和进展。在这篇综述中,我们简要讨论了葡萄糖、谷氨酰胺和脂肪酸的分解代谢途径,并重点关注这些途径的代谢重编程如何影响细胞功能,从而导致这些慢性肺部疾病的发生。我们还强调了如何利用代谢途径靶向治疗来预防和治疗这些疾病。

相似文献

1
Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis.
Am J Physiol Lung Cell Mol Physiol. 2018 Apr 1;314(4):L544-L554. doi: 10.1152/ajplung.00521.2017. Epub 2018 Jan 4.
4
Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics.
Oxid Med Cell Longev. 2021 Jul 27;2021:5188306. doi: 10.1155/2021/5188306. eCollection 2021.
5
From BPD to COPD? The hypothesis is intriguing but we lack lung pathology data in humans.
Eur Respir J. 2010 Jun;35(6):1419-20; author reply 1420. doi: 10.1183/09031936.00013310.
6
Endothelial-to-mesenchymal transition: Pathogenesis and therapeutic targets for chronic pulmonary and vascular diseases.
Biochem Pharmacol. 2019 Oct;168:100-107. doi: 10.1016/j.bcp.2019.06.021. Epub 2019 Jun 26.
8
The Roles of CCN1/CYR61 in Pulmonary Diseases.
Int J Mol Sci. 2020 Oct 22;21(21):7810. doi: 10.3390/ijms21217810.
9
Resident interstitial lung fibroblasts and their role in alveolar stem cell niche development, homeostasis, injury, and regeneration.
Stem Cells Transl Med. 2021 Jul;10(7):1021-1032. doi: 10.1002/sctm.20-0526. Epub 2021 Feb 24.
10
Perspectives on Wnt Signal Pathway in the Pathogenesis and Therapeutics of Chronic Obstructive Pulmonary Disease.
J Pharmacol Exp Ther. 2019 Jun;369(3):473-480. doi: 10.1124/jpet.118.256222. Epub 2019 Apr 5.

引用本文的文献

2
Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review).
Int J Mol Med. 2025 May;55(5). doi: 10.3892/ijmm.2025.5512. Epub 2025 Mar 7.
3
Pathogenesis and Therapy of Hermansky-Pudlak Syndrome (HPS)-Associated Pulmonary Fibrosis.
Int J Mol Sci. 2024 Oct 19;25(20):11270. doi: 10.3390/ijms252011270.
4
Pyruvate metabolism dictates fibroblast sensitivity to GLS1 inhibition during fibrogenesis.
JCI Insight. 2024 Aug 13;9(18):e178453. doi: 10.1172/jci.insight.178453.
5
Role of Myeloperoxidase, Oxidative Stress, and Inflammation in Bronchopulmonary Dysplasia.
Antioxidants (Basel). 2024 Jul 23;13(8):889. doi: 10.3390/antiox13080889.
6
Unraveling the immunometabolism puzzle: Deciphering systemic sclerosis pathogenesis.
Heliyon. 2024 Jul 31;10(15):e35445. doi: 10.1016/j.heliyon.2024.e35445. eCollection 2024 Aug 15.
7
miRNA Signatures in Bronchopulmonary Dysplasia: Implications for Biomarkers, Pathogenesis, and Therapeutic Options.
Front Biosci (Landmark Ed). 2024 Jul 25;29(7):271. doi: 10.31083/j.fbl2907271.
8
Role of the Gut Microbiota-Brain Axis in Brain Damage in Preterm Infants.
ACS Pharmacol Transl Sci. 2024 Apr 26;7(5):1197-1204. doi: 10.1021/acsptsci.3c00369. eCollection 2024 May 10.
9
Subnormothermic lung perfusion possibly protects against ischemia-reperfusion injury via the mTORC-HIF-1α pathway.
J Thorac Dis. 2024 Apr 30;16(4):2365-2378. doi: 10.21037/jtd-23-1809. Epub 2024 Apr 24.
10

本文引用的文献

1
Glutaminolysis is required for transforming growth factor-β1-induced myofibroblast differentiation and activation.
J Biol Chem. 2018 Jan 26;293(4):1218-1228. doi: 10.1074/jbc.RA117.000444. Epub 2017 Dec 8.
3
Glucose feeds the TCA cycle via circulating lactate.
Nature. 2017 Nov 2;551(7678):115-118. doi: 10.1038/nature24057. Epub 2017 Oct 18.
4
Mitochondrial Dysfunction in Lysosomal Storage Disorders.
Diseases. 2016 Oct 11;4(4):31. doi: 10.3390/diseases4040031.
6
Metabolic heterogeneity of idiopathic pulmonary fibrosis: a metabolomic study.
BMJ Open Respir Res. 2017 Jun 5;4(1):e000183. doi: 10.1136/bmjresp-2017-000183. eCollection 2017.
7
9
Metabolic characterization and RNA profiling reveal glycolytic dependence of profibrotic phenotype of alveolar macrophages in lung fibrosis.
Am J Physiol Lung Cell Mol Physiol. 2017 Nov 1;313(5):L834-L844. doi: 10.1152/ajplung.00235.2017. Epub 2017 Aug 10.
10
Phosphorylation of p62 by AMP-activated protein kinase mediates autophagic cell death in adult hippocampal neural stem cells.
J Biol Chem. 2017 Aug 18;292(33):13795-13808. doi: 10.1074/jbc.M117.780874. Epub 2017 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验