Department of Genome Sciences, University of Washington, USA.
Department of Pathology, University of Washington, USA.
Methods. 2018 Jun 1;142:59-73. doi: 10.1016/j.ymeth.2018.01.014. Epub 2018 Jan 31.
The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods.
核内染色质的折叠和三维(3D)结构对基因组功能具有重要影响。在过去的十年中,用于描绘 3D 基因组结构的基因组工具取得了快速进展。其中,基于染色体构象捕获(3C)的方法(如 Hi-C)是用于绘制染色质相互作用的最广泛使用的技术。然而,传统的 Hi-C 方案依赖于限制性内切酶(REs)来片段化染色质,因此在分辨率上存在限制。我们最近开发了用于绘制 3D 基因组结构的 DNase Hi-C,该方法使用 DNase I 来片段化染色质。DNase Hi-C 克服了与传统 Hi-C 方法相关的与 RE 相关的限制,从而提高了方法分辨率。此外,将这种方法与 DNA 捕获技术相结合提供了一种高通量方法(靶向 DNase Hi-C),可以以极高的分辨率绘制精细的染色质结构。因此,靶向 DNase Hi-C 将有助于描绘控制基因表达的顺式调控网络的物理景观,并用于描述与表型相关的染色质 3D 特征。在这里,我们提供了这两种方法的详细设计和逐步工作方案描述。