Suppr超能文献

关于除草剂抑制 AHAS 机制的结构见解。

Structural insights into the mechanism of inhibition of AHAS by herbicides.

机构信息

School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia;

School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.

出版信息

Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E1945-E1954. doi: 10.1073/pnas.1714392115. Epub 2018 Feb 13.

Abstract

Acetohydroxyacid synthase (AHAS), the first enzyme in the branched amino acid biosynthesis pathway, is present only in plants and microorganisms, and it is the target of >50 commercial herbicides. Penoxsulam (PS), which is a highly effective broad-spectrum AHAS-inhibiting herbicide, is used extensively to control weed growth in rice crops. However, the molecular basis for its inhibition of AHAS is poorly understood. This is despite the availability of structural data for all other classes of AHAS-inhibiting herbicides. Here, crystallographic data for AHAS (2.3 Å) and AHAS (2.5 Å) in complex with PS reveal the extraordinary molecular mechanisms that underpin its inhibitory activity. The structures show that inhibition of AHAS by PS triggers expulsion of two molecules of oxygen bound in the active site, releasing them as substrates for an oxygenase side reaction of the enzyme. The structures also show that PS either stabilizes the thiamin diphosphate (ThDP)-peracetate adduct, a product of this oxygenase reaction, or traps within the active site an intact molecule of peracetate in the presence of a degraded form of ThDP: thiamine aminoethenethiol diphosphate. Kinetic analysis shows that PS inhibits AHAS by a combination of events involving FAD oxidation and chemical alteration of ThDP. With the emergence of increasing levels of resistance toward front-line herbicides and the need to optimize the use of arable land, these data suggest strategies for next generation herbicide design.

摘要

乙酰羟酸合酶 (AHAS) 是支链氨基酸生物合成途径中的第一个酶,仅存在于植物和微生物中,是>50 种商业除草剂的靶标。吡嘧磺隆 (PS) 是一种高效广谱的 AHAS 抑制剂除草剂,广泛用于控制水稻作物中的杂草生长。然而,其抑制 AHAS 的分子基础仍不清楚。尽管所有其他类 AHAS 抑制剂除草剂的结构数据都可用。在这里,与 PS 结合的 AHAS (2.3 Å) 和 AHAS (2.5 Å) 的晶体学数据揭示了其抑制活性的非凡分子机制。这些结构表明,PS 抑制 AHAS 会引发结合在活性部位的两个氧分子的排出,将它们作为酶的加氧酶副反应的底物释放。这些结构还表明,PS 要么稳定了噻二磷酸 (ThDP)-过乙酸酯加合物,这是该加氧酶反应的产物,要么在存在 ThDP 降解形式的情况下,在活性部位捕获完整的过乙酸酯分子:噻唑素氨基乙硫醇二磷酸。动力学分析表明,PS 通过涉及 FAD 氧化和 ThDP 化学修饰的一系列事件来抑制 AHAS。随着对一线除草剂的抗性水平不断提高以及优化耕地利用的需求,这些数据为下一代除草剂设计提供了策略。

相似文献

1
Structural insights into the mechanism of inhibition of AHAS by herbicides.
Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E1945-E1954. doi: 10.1073/pnas.1714392115. Epub 2018 Feb 13.
2
Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):E1091-E1100. doi: 10.1073/pnas.1616142114. Epub 2017 Jan 30.
4
Crystal structure of plant acetohydroxyacid synthase, the target for several commercial herbicides.
FEBS J. 2017 Jul;284(13):2037-2051. doi: 10.1111/febs.14102. Epub 2017 May 29.
5
Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors.
J Mol Biol. 2002 Mar 22;317(2):249-62. doi: 10.1006/jmbi.2001.5419.
6
7
Crystal Structure of the Commercial Herbicide, Amidosulfuron, in Complex with Acetohydroxyacid Synthase.
J Agric Food Chem. 2023 Apr 5;71(13):5117-5126. doi: 10.1021/acs.jafc.2c08528. Epub 2023 Mar 21.
8
Acetohydroxyacid synthase: a target for antimicrobial drug discovery.
Curr Pharm Des. 2014;20(5):740-53. doi: 10.2174/13816128113199990009.
10
Preliminary X-ray crystallographic studies of the catalytic subunit of Escherichia coli AHAS II with its cofactors.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Jun 1;67(Pt 6):659-61. doi: 10.1107/S1744309111008839. Epub 2011 May 25.

引用本文的文献

2
Development and Breeding of Herbicide-Resistant Sorghum for Effective Cereal-Legume Intercropping.
Adv Sci (Weinh). 2025 Jul;12(27):e2503083. doi: 10.1002/advs.202503083. Epub 2025 May 8.
3
NHC-Mediated Radical Acylation Catalyzed by Thiamine- and Flavin-Dependent Enzymes.
J Am Chem Soc. 2025 Apr 30;147(17):14837-14844. doi: 10.1021/jacs.5c04484. Epub 2025 Apr 15.
5
AflaILVB/G/I and AflaILVD are involved in mycelial production, aflatoxin biosynthesis, and fungal virulence in .
Front Cell Infect Microbiol. 2024 Mar 26;14:1372779. doi: 10.3389/fcimb.2024.1372779. eCollection 2024.
6
Negative Effects of Butachlor on the Growth and Physiology of Four Aquatic Plants.
Plants (Basel). 2024 Jan 19;13(2):304. doi: 10.3390/plants13020304.
8
Structural basis of resistance to herbicides that target acetohydroxyacid synthase.
Nat Commun. 2022 Jun 11;13(1):3368. doi: 10.1038/s41467-022-31023-x.

本文引用的文献

2
Crystal structure of plant acetohydroxyacid synthase, the target for several commercial herbicides.
FEBS J. 2017 Jul;284(13):2037-2051. doi: 10.1111/febs.14102. Epub 2017 May 29.
4
The Role of a FAD Cofactor in the Regulation of Acetohydroxyacid Synthase by Redox Signaling Molecules.
J Biol Chem. 2017 Mar 24;292(12):5101-5109. doi: 10.1074/jbc.M116.773242. Epub 2017 Feb 3.
5
Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):E1091-E1100. doi: 10.1073/pnas.1616142114. Epub 2017 Jan 30.
7
Triazolopyrimidines as a New Herbicidal Lead for Combating Weed Resistance Associated with Acetohydroxyacid Synthase Mutation.
J Agric Food Chem. 2016 Jun 22;64(24):4845-57. doi: 10.1021/acs.jafc.6b00720. Epub 2016 Jun 13.
8
Commercial Herbicides Can Trigger the Oxidative Inactivation of Acetohydroxyacid Synthase.
Angew Chem Int Ed Engl. 2016 Mar 18;55(13):4247-51. doi: 10.1002/anie.201511985. Epub 2016 Feb 29.
9
Identification and evaluation of novel acetolactate synthase inhibitors as antifungal agents.
Antimicrob Agents Chemother. 2013 May;57(5):2272-80. doi: 10.1128/AAC.01809-12. Epub 2013 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验