Suppr超能文献

一种详细的基于无细胞转录-翻译的测定法,用于破译 CRISPR 间隔区相邻基序。

A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs.

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.

School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, United States.

出版信息

Methods. 2018 Jul 1;143:48-57. doi: 10.1016/j.ymeth.2018.02.016. Epub 2018 Feb 24.

Abstract

The RNA-guided nucleases derived from the CRISPR-Cas systems in bacteria and archaea have found numerous applications in biotechnology, including genome editing, imaging, and gene regulation. However, the discovery of novel Cas nucleases has outpaced their characterization and subsequent exploitation. A key step in characterizing Cas nucleases is determining which protospacer-adjacent motif (PAM) sequences they recognize. Here, we report advances to an in vitro method based on an E. coli cell-free transcription-translation system (TXTL) to rapidly elucidate PAMs recognized by Cas nucleases. The method obviates the need for cloning Cas nucleases or gRNAs, does not require the purification of protein or RNA, and can be performed in less than a day. To advance our previously published method, we incorporated an internal GFP cleavage control to assess the extent of library cleavage as well as Sanger sequencing of the cleaved library to assess PAM depletion prior to next-generation sequencing. We also detail the methods needed to construct all relevant DNA constructs, and how to troubleshoot the assay. We finally demonstrate the technique by determining PAM sequences recognized by the Neisseria meningitidis Cas9, revealing subtle sequence requirements of this highly specific PAM. The overall method offers a rapid means to identify PAMs recognized by diverse CRISPR nucleases, with the potential to greatly accelerate our ability to characterize and harness novel CRISPR nucleases across their many uses.

摘要

细菌和古菌 CRISPR-Cas 系统衍生的 RNA 引导核酸酶在生物技术中有着广泛的应用,包括基因组编辑、成像和基因调控。然而,新型 Cas 核酸酶的发现速度超过了对它们的特性描述和后续开发。对 Cas 核酸酶进行特性描述的关键步骤是确定它们识别的哪种原间隔序列邻近基序(PAM)序列。在这里,我们报告了在基于大肠杆菌无细胞转录-翻译系统(TXTL)的体外方法方面的进展,该方法可快速阐明 Cas 核酸酶识别的 PAM 序列。该方法避免了克隆 Cas 核酸酶或 gRNA 的需要,不需要蛋白质或 RNA 的纯化,并且可以在不到一天的时间内完成。为了改进我们之前发表的方法,我们引入了内部 GFP 切割控制,以评估文库切割的程度,以及在进行下一代测序之前对切割文库进行 Sanger 测序以评估 PAM 耗竭。我们还详细介绍了构建所有相关 DNA 构建体所需的方法,以及如何对该测定进行故障排除。最后,我们通过确定脑膜炎奈瑟菌 Cas9 识别的 PAM 序列来证明该技术,揭示了这个高度特异性 PAM 的细微序列要求。该综合方法提供了一种快速识别不同 CRISPR 核酸酶识别的 PAM 的方法,有可能极大地提高我们对新型 CRISPR 核酸酶进行特性描述和利用的能力,应用于其众多用途。

相似文献

1
A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs.
Methods. 2018 Jul 1;143:48-57. doi: 10.1016/j.ymeth.2018.02.016. Epub 2018 Feb 24.
3
Scalable characterization of the PAM requirements of CRISPR-Cas enzymes using HT-PAMDA.
Nat Protoc. 2021 Mar;16(3):1511-1547. doi: 10.1038/s41596-020-00465-2. Epub 2021 Feb 5.
5
A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
Mol Cell. 2019 Feb 21;73(4):714-726.e4. doi: 10.1016/j.molcel.2018.12.003. Epub 2018 Dec 20.
6
A pipeline for characterization of novel Cas9 orthologs.
Methods Enzymol. 2019;616:219-240. doi: 10.1016/bs.mie.2018.10.021. Epub 2018 Dec 27.
7
Methods for decoding Cas9 protospacer adjacent motif (PAM) sequences: A brief overview.
Methods. 2017 May 15;121-122:3-8. doi: 10.1016/j.ymeth.2017.03.006. Epub 2017 Mar 24.
8
CRISPR-Cas "Non-Target" Sites Inhibit On-Target Cutting Rates.
CRISPR J. 2020 Dec;3(6):550-561. doi: 10.1089/crispr.2020.0065.
9
Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
PLoS Biol. 2019 Oct 11;17(10):e3000496. doi: 10.1371/journal.pbio.3000496. eCollection 2019 Oct.
10
Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a.
Biochem Soc Trans. 2020 Feb 28;48(1):207-219. doi: 10.1042/BST20190563.

引用本文的文献

1
TOP-SECRETS enables Cas9 nucleases to discriminate SNVs outside of PAMs.
bioRxiv. 2025 May 10:2025.05.06.652491. doi: 10.1101/2025.05.06.652491.
2
Characterization of diverse Cas9 orthologs for genome and epigenome editing.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2417674122. doi: 10.1073/pnas.2417674122. Epub 2025 Mar 12.
3
Characterization of CRISPR-Cas systems.
mSphere. 2024 Jul 30;9(7):e0017124. doi: 10.1128/msphere.00171-24. Epub 2024 Jul 11.
4
Selection of extended CRISPR RNAs with enhanced targeting and specificity.
Commun Biol. 2024 Jan 12;7(1):86. doi: 10.1038/s42003-024-05776-8.
7
Functional characterization of diverse type I-F CRISPR-associated transposons.
Nucleic Acids Res. 2022 Nov 11;50(20):11670-11681. doi: 10.1093/nar/gkac985.
8
Effects of DNA template preparation on variability in cell-free protein production.
Synth Biol (Oxf). 2022 Aug 13;7(1):ysac015. doi: 10.1093/synbio/ysac015. eCollection 2022.
9
Variability in cell-free expression reactions can impact qualitative genetic circuit characterization.
Synth Biol (Oxf). 2022 Aug 2;7(1):ysac011. doi: 10.1093/synbio/ysac011. eCollection 2022.

本文引用的文献

2
The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes.
mBio. 2017 Sep 19;8(5):e01397-17. doi: 10.1128/mBio.01397-17.
3
Diversity, classification and evolution of CRISPR-Cas systems.
Curr Opin Microbiol. 2017 Jun;37:67-78. doi: 10.1016/j.mib.2017.05.008. Epub 2017 Jun 9.
4
Short DNA containing χ sites enhances DNA stability and gene expression in E. coli cell-free transcription-translation systems.
Biotechnol Bioeng. 2017 Sep;114(9):2137-2141. doi: 10.1002/bit.26333. Epub 2017 May 23.
5
Methods for decoding Cas9 protospacer adjacent motif (PAM) sequences: A brief overview.
Methods. 2017 May 15;121-122:3-8. doi: 10.1016/j.ymeth.2017.03.006. Epub 2017 Mar 24.
6
Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array.
Nat Biotechnol. 2017 Jan;35(1):31-34. doi: 10.1038/nbt.3737. Epub 2016 Dec 5.
7
Deciphering, Communicating, and Engineering the CRISPR PAM.
J Mol Biol. 2017 Jan 20;429(2):177-191. doi: 10.1016/j.jmb.2016.11.024. Epub 2016 Dec 1.
8
Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection.
Nature. 2016 Oct 13;538(7624):270-273. doi: 10.1038/nature19802. Epub 2016 Sep 26.
9
Applications of CRISPR technologies in research and beyond.
Nat Biotechnol. 2016;34(9):933-941. doi: 10.1038/nbt.3659. Epub 2016 Sep 8.
10
Evolutionary Ecology of Prokaryotic Immune Mechanisms.
Microbiol Mol Biol Rev. 2016 Jul 13;80(3):745-63. doi: 10.1128/MMBR.00011-16. Print 2016 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验