Suppr超能文献

肠弯曲菌 Cas9 通过 CRISPR RNA 依赖性结合和切割内源性 RNA。

CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9.

机构信息

Institute of Molecular Infection Biology (IMIB)/Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2 / D15, D-97080 Würzburg, Germany.

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.

出版信息

Mol Cell. 2018 Mar 1;69(5):893-905.e7. doi: 10.1016/j.molcel.2018.01.032.

Abstract

Cas9 nucleases naturally utilize CRISPR RNAs (crRNAs) to silence foreign double-stranded DNA. While recent work has shown that some Cas9 nucleases can also target RNA, RNA recognition has required nuclease modifications or accessory factors. Here, we show that the Campylobacter jejuni Cas9 (CjCas9) can bind and cleave complementary endogenous mRNAs in a crRNA-dependent manner. Approximately 100 transcripts co-immunoprecipitated with CjCas9 and generally can be subdivided through their base-pairing potential to the four crRNAs. A subset of these RNAs was cleaved around or within the predicted binding site. Mutational analyses revealed that RNA binding was crRNA and tracrRNA dependent and that target RNA cleavage required the CjCas9 HNH domain. We further observed that RNA cleavage was PAM independent, improved with greater complementarity between the crRNA and the RNA target, and was programmable in vitro. These findings suggest that C. jejuni Cas9 is a promiscuous nuclease that can coordinately target both DNA and RNA.

摘要

Cas9 核酸酶天然利用 CRISPR RNA(crRNA)来沉默外源双链 DNA。虽然最近的研究表明,一些 Cas9 核酸酶也可以靶向 RNA,但 RNA 的识别需要核酸酶的修饰或辅助因子。在这里,我们证明了空肠弯曲菌 Cas9(CjCas9)可以依赖于 crRNA 结合并切割互补的内源性 mRNA。大约 100 个转录本与 CjCas9 共免疫沉淀,并且通常可以根据其与四个 crRNA 的碱基配对潜力进行细分。这些 RNA 中的一部分在预测的结合位点周围或内部被切割。突变分析表明,RNA 结合依赖于 crRNA 和 tracrRNA,并且靶 RNA 的切割需要 CjCas9 的 HNH 结构域。我们进一步观察到,RNA 切割不依赖于 PAM,在 crRNA 和 RNA 靶之间具有更大的互补性时会得到改善,并且在体外具有可编程性。这些发现表明,空肠弯曲菌 Cas9 是一种混杂的核酸酶,可以协调靶向 DNA 和 RNA。

相似文献

1
CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9.
Mol Cell. 2018 Mar 1;69(5):893-905.e7. doi: 10.1016/j.molcel.2018.01.032.
2
Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis.
Mol Cell. 2018 Mar 1;69(5):906-914.e4. doi: 10.1016/j.molcel.2018.01.025. Epub 2018 Feb 15.
3
Identification of RNA Binding Partners of CRISPR-Cas Proteins in Prokaryotes Using RIP-Seq.
Methods Mol Biol. 2022;2404:111-133. doi: 10.1007/978-1-0716-1851-6_6.
4
The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems.
RNA Biol. 2013 May;10(5):726-37. doi: 10.4161/rna.24321. Epub 2013 Apr 5.
6
The CRISPR-cas system promotes antimicrobial resistance in Campylobacter jejuni.
Future Microbiol. 2018 Dec;13:1757-1774. doi: 10.2217/fmb-2018-0234. Epub 2018 Dec 11.
7
Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9.
Science. 2021 May 28;372(6545):941-948. doi: 10.1126/science.abe7106. Epub 2021 Apr 27.
8
Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease.
J Biol Chem. 2014 May 9;289(19):13284-94. doi: 10.1074/jbc.M113.539726. Epub 2014 Mar 14.
10
Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes.
Mol Cell. 2015 Nov 5;60(3):398-407. doi: 10.1016/j.molcel.2015.10.030.

引用本文的文献

1
In situ structure of a bacterial flagellar motor at subnanometre resolution reveals adaptations for increased torque.
Nat Microbiol. 2025 Jul;10(7):1723-1740. doi: 10.1038/s41564-025-02012-9. Epub 2025 Jul 1.
2
Disparate mechanisms counteract extraneous CRISPR RNA production in type II-C CRISPR-Cas systems.
Microlife. 2025 May 14;6:uqaf007. doi: 10.1093/femsml/uqaf007. eCollection 2025.
5
Interplay of two small RNAs fine-tunes hierarchical flagella gene expression in Campylobacter jejuni.
Nat Commun. 2024 Jun 19;15(1):5240. doi: 10.1038/s41467-024-48986-8.
6
Repair of CRISPR-guided RNA breaks enables site-specific RNA excision in human cells.
Science. 2024 May 17;384(6697):808-814. doi: 10.1126/science.adk5518. Epub 2024 Apr 25.
7
Continuous directed evolution of a compact CjCas9 variant with broad PAM compatibility.
Nat Chem Biol. 2024 Mar;20(3):333-343. doi: 10.1038/s41589-023-01427-x. Epub 2023 Sep 21.
8
RNA-Dependent RNA Targeting by CRISPR-Cas Systems: Characterizations and Applications.
Int J Mol Sci. 2023 Apr 7;24(8):6894. doi: 10.3390/ijms24086894.
9
Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications.
Mol Biomed. 2023 Apr 7;4(1):10. doi: 10.1186/s43556-023-00115-5.
10
Programmable macromolecule-based RNA-targeting therapies to treat human neurological disorders.
RNA. 2023 Apr;29(4):489-497. doi: 10.1261/rna.079519.122. Epub 2023 Jan 24.

本文引用的文献

1
RNA-dependent RNA targeting by CRISPR-Cas9.
Elife. 2018 Jan 5;7:e32724. doi: 10.7554/eLife.32724.
2
RNA editing with CRISPR-Cas13.
Science. 2017 Nov 24;358(6366):1019-1027. doi: 10.1126/science.aaq0180. Epub 2017 Oct 25.
3
RNA targeting with CRISPR-Cas13.
Nature. 2017 Oct 12;550(7675):280-284. doi: 10.1038/nature24049. Epub 2017 Oct 4.
4
Type III CRISPR-Cas systems: when DNA cleavage just isn't enough.
Curr Opin Microbiol. 2017 Jun;37:150-154. doi: 10.1016/j.mib.2017.08.003. Epub 2017 Aug 31.
5
Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9.
Cell. 2017 Aug 24;170(5):899-912.e10. doi: 10.1016/j.cell.2017.07.010. Epub 2017 Aug 10.
6
Diversity, classification and evolution of CRISPR-Cas systems.
Curr Opin Microbiol. 2017 Jun;37:67-78. doi: 10.1016/j.mib.2017.05.008. Epub 2017 Jun 9.
7
RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes.
Mol Cell. 2017 May 4;66(3):373-383.e3. doi: 10.1016/j.molcel.2017.04.008.
8
Nucleic acid detection with CRISPR-Cas13a/C2c2.
Science. 2017 Apr 28;356(6336):438-442. doi: 10.1126/science.aam9321. Epub 2017 Apr 13.
9
CRISPR-Cas9 Structures and Mechanisms.
Annu Rev Biophys. 2017 May 22;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub 2017 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验