Suppr超能文献

肝 NADH 和 NADPH 代谢的时空区隔化。

Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism.

机构信息

From the Division of Gastroenterology and

Howard Hughes Medical Institute, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114 and.

出版信息

J Biol Chem. 2018 May 18;293(20):7508-7516. doi: 10.1074/jbc.TM117.000258. Epub 2018 Mar 7.

Abstract

Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD/NADH and NADP/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease.

摘要

区隔化是真核生物代谢的基本设计原则。在这里,我们重点讨论肝脏中的 NAD/NADH 和 NADP/NADPH 的区隔化,肝脏是每天经历生化生理学极端变化的器官。使用经典生化分级分离和氧化还原偶联代谢物测量对肝脏进行的历史研究,产生了普遍的观点,即线粒体 NAD(H) 池往往被氧化,对于能量稳态很重要,而细胞质 NADP(H) 池往往高度还原,用于还原性生物合成。尽管有这种教科书式的观点,但仍有许多问题尚未解决,例如这些亚细胞池的相对大小及其在不同生理状态下的氧化还原比,以及这些氧化还原比在多大程度上仅仅是代谢的指示或驱动因素。通过进行生物信息学调查,我们发现肝脏表达了 352 种已知或预测的组成肝 NAD(P)组的酶,即所有预测产生或消耗 NADP(H) 或 NAD(H) 或将其用作氧化还原辅助因子的酶的总和。值得注意的是,预测不到一半的酶定位于细胞质或线粒体中,其中很大一部分基因的表达模式在一天中的时间或在禁食或进食时发生变化。未来的挑战在于应用新兴的遗传工具,以亚细胞和时间分辨率测量和操纵肝 NADP(H) 和 NAD(H)。此类基础研究的见解对于解码涉及肝 NAD(P)H 改变的非常常见疾病的发病机制至关重要,例如糖尿病和脂肪肝疾病。

相似文献

1
Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism.
J Biol Chem. 2018 May 18;293(20):7508-7516. doi: 10.1074/jbc.TM117.000258. Epub 2018 Mar 7.
2
NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
Antioxid Redox Signal. 2018 Jan 20;28(3):251-272. doi: 10.1089/ars.2017.7216. Epub 2017 Jul 28.
3
Pyridine Dinucleotides from Molecules to Man.
Antioxid Redox Signal. 2018 Jan 20;28(3):180-212. doi: 10.1089/ars.2017.7120. Epub 2017 Jul 25.
5
Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
Antioxid Redox Signal. 2018 Jan 20;28(3):167-179. doi: 10.1089/ars.2017.7014. Epub 2017 Jul 19.
9
Deuterium Tracing to Interrogate Compartment-Specific NAD(P)H Metabolism in Cultured Mammalian Cells.
Methods Mol Biol. 2020;2088:51-71. doi: 10.1007/978-1-0716-0159-4_4.
10
Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors.
Antioxid Redox Signal. 2018 Jan 20;28(3):213-229. doi: 10.1089/ars.2017.7226. Epub 2017 Aug 9.

引用本文的文献

1
2
Mitochondrial NADPH fuels mitochondrial fatty acid synthesis and lipoylation to power oxidative metabolism.
Nat Cell Biol. 2025 May;27(5):790-800. doi: 10.1038/s41556-025-01655-4. Epub 2025 Apr 21.
3
Significance of Malic Enzyme 1 in Cancer: A Review.
Curr Issues Mol Biol. 2025 Jan 29;47(2):83. doi: 10.3390/cimb47020083.
4
Tissue-specific modulation of NADH consumption as an anti-aging intervention in Drosophila.
bioRxiv. 2025 Jan 6:2025.01.06.631511. doi: 10.1101/2025.01.06.631511.
5
Blood expression of NADK2 as a diagnostic biomarker for sciatica.
iScience. 2024 Oct 18;27(11):111196. doi: 10.1016/j.isci.2024.111196. eCollection 2024 Nov 15.
6
Near-Infrared Visualization of NAD(P)H Dynamics in Live Cells and Larvae Using a Coumarin-Based Pyridinium Fluorescent Probe.
ACS Appl Bio Mater. 2024 Dec 16;7(12):8465-8478. doi: 10.1021/acsabm.4c01294. Epub 2024 Nov 19.
8
Cardiac NAD depletion in mice promotes hypertrophic cardiomyopathy and arrhythmias prior to impaired bioenergetics.
Nat Cardiovasc Res. 2024 Oct;3(10):1236-1248. doi: 10.1038/s44161-024-00542-9. Epub 2024 Sep 18.
9
The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity.
Antioxidants (Basel). 2024 Jul 8;13(7):820. doi: 10.3390/antiox13070820.

本文引用的文献

1
Live cell imaging of cytosolic NADH/NAD ratio in hepatocytes and liver slices.
Am J Physiol Gastrointest Liver Physiol. 2018 Jan 1;314(1):G97-G108. doi: 10.1152/ajpgi.00093.2017. Epub 2017 Oct 12.
2
A genetically encoded tool for manipulation of NADP/NADPH in living cells.
Nat Chem Biol. 2017 Oct;13(10):1088-1095. doi: 10.1038/nchembio.2454. Epub 2017 Aug 7.
3
Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism.
Nat Methods. 2017 Jul;14(7):720-728. doi: 10.1038/nmeth.4306. Epub 2017 Jun 5.
4
A subcellular map of the human proteome.
Science. 2017 May 26;356(6340). doi: 10.1126/science.aal3321. Epub 2017 May 11.
5
The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis.
J Cell Biol. 2017 Mar 6;216(3):723-741. doi: 10.1083/jcb.201607091. Epub 2017 Feb 9.
6
KEGG: new perspectives on genomes, pathways, diseases and drugs.
Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361. doi: 10.1093/nar/gkw1092. Epub 2016 Nov 28.
7
InterPro in 2017-beyond protein family and domain annotations.
Nucleic Acids Res. 2017 Jan 4;45(D1):D190-D199. doi: 10.1093/nar/gkw1107. Epub 2016 Nov 29.
8
UniProt: the universal protein knowledgebase.
Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169. doi: 10.1093/nar/gkw1099. Epub 2016 Nov 29.
9
Expansion of the Gene Ontology knowledgebase and resources.
Nucleic Acids Res. 2017 Jan 4;45(D1):D331-D338. doi: 10.1093/nar/gkw1108. Epub 2016 Nov 29.
10
Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species.
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12715-12720. doi: 10.1073/pnas.1609227113. Epub 2016 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验