Suppr超能文献

工程疫苗以重新编程对头颈部癌症的免疫反应。

Engineering Vaccines to Reprogram Immunity against Head and Neck Cancer.

机构信息

1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.

2 University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA.

出版信息

J Dent Res. 2018 Jun;97(6):627-634. doi: 10.1177/0022034518764416. Epub 2018 Mar 13.

Abstract

The recent Food and Drug Administration's approval of monoclonal antibodies targeting immune checkpoint receptors (ICRs) for recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) offers exciting promise to improve patient outcome and reduce morbidities. A favorable response to ICR blockade relies on an extensive collection of preexisting tumor-specific T cells in the tumor microenvironment (TME). ICR blockade reinvigorates exhausted CD8 T cells and enhances immune killing. However, resistance to ICR blockade is observed in about 85% of patients with HNSCC, therefore highlighting the importance of characterizing the mechanisms underlying HNSCC immune escape and exploring combinatorial strategies to sensitize hypoimmunogenic cold HNSCC to ICR inhibition. Cancer vaccines are designed to bypass the cold TME and directly deliver cancer antigens to antigen-presenting cells (APCs); these vaccines epitomize a priming strategy to synergize with ICR inhibitors. Cancer cells are ineffective antigen presenters, and poor APC infiltration as well as the M2-like polarization in the TME further dampens antigen uptake and processing, both of which render ineffective innate and adaptive immune detection. Cancer vaccines directly activate APC and expand the tumor-specific T-cell repertoire. In addition, cancer vaccines often contain an adjuvant, which further improves APC function, promotes epitope spreading, and augments host intrinsic antitumor immunity. Thus, the vaccine-induced immune priming generates a pool of effectors whose function can be enhanced by ICR inhibitors. In this review, we summarize the major HNSCC immune evasion strategies, the ongoing effort toward improving HNSCC vaccines, and the current challenges limiting the efficacy of cancer vaccines.

摘要

最近,食品和药物管理局(FDA)批准了针对复发性或转移性头颈部鳞状细胞癌(HNSCC)的免疫检查点受体(ICR)单克隆抗体,这为改善患者预后和降低发病率带来了令人振奋的前景。ICR 阻断的有利反应依赖于肿瘤微环境(TME)中预先存在的大量肿瘤特异性 T 细胞。ICR 阻断重新激活衰竭的 CD8 T 细胞并增强免疫杀伤。然而,大约 85%的 HNSCC 患者对 ICR 阻断有耐药性,因此强调了阐明 HNSCC 免疫逃逸的机制以及探索组合策略使低免疫原性冷 HNSCC 对 ICR 抑制敏感的重要性。癌症疫苗旨在绕过冷 TME 并将癌症抗原直接递送至抗原呈递细胞(APC);这些疫苗是与 ICR 抑制剂协同作用的启动策略的缩影。癌细胞是无效的抗原呈递细胞,而 APC 浸润不良以及 TME 中的 M2 样极化进一步抑制了抗原摄取和处理,这两者都使先天和适应性免疫检测无效。癌症疫苗直接激活 APC 并扩展肿瘤特异性 T 细胞库。此外,癌症疫苗通常含有佐剂,这进一步改善了 APC 的功能,促进了表位扩散,并增强了宿主内在的抗肿瘤免疫力。因此,疫苗诱导的免疫启动产生了效应器池,其功能可以通过 ICR 抑制剂增强。在这篇综述中,我们总结了 HNSCC 免疫逃逸的主要策略、提高 HNSCC 疫苗的当前努力以及限制癌症疫苗疗效的当前挑战。

相似文献

1
Engineering Vaccines to Reprogram Immunity against Head and Neck Cancer.
J Dent Res. 2018 Jun;97(6):627-634. doi: 10.1177/0022034518764416. Epub 2018 Mar 13.
2
Head and Neck Cancer Immunotherapy beyond the Checkpoint Blockade.
J Dent Res. 2019 Sep;98(10):1073-1080. doi: 10.1177/0022034519864112. Epub 2019 Jul 24.
3
[Immunotherapy of head and neck cancer. Current developments].
HNO. 2013 Jul;61(7):559-72. doi: 10.1007/s00106-012-2635-6.
4
Mitigating SOX2-potentiated Immune Escape of Head and Neck Squamous Cell Carcinoma with a STING-inducing Nanosatellite Vaccine.
Clin Cancer Res. 2018 Sep 1;24(17):4242-4255. doi: 10.1158/1078-0432.CCR-17-2807. Epub 2018 May 16.
5
Rational Design of T-Cell- and B-Cell-Based Therapeutic Cancer Vaccines.
Acc Chem Res. 2022 Sep 20;55(18):2660-2671. doi: 10.1021/acs.accounts.2c00360. Epub 2022 Sep 1.
6
Personalized cancer vaccination in head and neck cancer.
Cancer Sci. 2021 Mar;112(3):978-988. doi: 10.1111/cas.14784. Epub 2021 Jan 27.
9
Anti-tumor vaccines in head and neck cancer: targeting immune responses to the tumor.
Curr Cancer Drug Targets. 2007 Nov;7(7):633-42. doi: 10.2174/156800907782418310.
10
Immunotherapy for head and neck cancer: the future of treatment?
Expert Opin Biol Ther. 2017 Jun;17(6):701-708. doi: 10.1080/14712598.2017.1315100. Epub 2017 Apr 11.

引用本文的文献

1
The regulatory role and mechanism of energy metabolism and immune response in head and neck cancer.
Genes Dis. 2025 Mar 19;12(6):101607. doi: 10.1016/j.gendis.2025.101607. eCollection 2025 Nov.
2
Vaccine-Based Immunotherapy for Oropharyngeal and Nasopharyngeal Cancers.
J Clin Med. 2025 Feb 11;14(4):1170. doi: 10.3390/jcm14041170.
3
Vaccine a promising immunotherapy option for head and neck cancer patients.
Pak J Med Sci. 2024 Aug;40(7):1578-1583. doi: 10.12669/pjms.40.7.8791.
5
Immune microenvironment of human papillomavirus-positive head and neck squamous cell carcinoma.
Sci Prog. 2024 Jan-Mar;107(1):368504241237888. doi: 10.1177/00368504241237888.
6
Immune escape of head and neck cancer mediated by the impaired MHC-I antigen presentation pathway.
Oncogene. 2024 Feb;43(6):388-394. doi: 10.1038/s41388-023-02912-2. Epub 2024 Jan 4.
8
Therapeutic Vaccination in Head and Neck Squamous Cell Carcinoma-A Review.
Vaccines (Basel). 2023 Mar 13;11(3):634. doi: 10.3390/vaccines11030634.

本文引用的文献

1
Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab.
Cell. 2017 Nov 2;171(4):934-949.e16. doi: 10.1016/j.cell.2017.09.028. Epub 2017 Oct 12.
2
Resistance to CTLA-4 checkpoint inhibition reversed through selective elimination of granulocytic myeloid cells.
Oncotarget. 2017 Jun 11;8(34):55804-55820. doi: 10.18632/oncotarget.18437. eCollection 2017 Aug 22.
3
PD-1 Status in CD8 T Cells Associates with Survival and Anti-PD-1 Therapeutic Outcomes in Head and Neck Cancer.
Cancer Res. 2017 Nov 15;77(22):6353-6364. doi: 10.1158/0008-5472.CAN-16-3167. Epub 2017 Sep 13.
4
Dendritic Cells but Not Macrophages Sense Tumor Mitochondrial DNA for Cross-priming through Signal Regulatory Protein α Signaling.
Immunity. 2017 Aug 15;47(2):363-373.e5. doi: 10.1016/j.immuni.2017.07.016. Epub 2017 Aug 8.
5
Antigen-specific immunotherapies in rheumatic diseases.
Nat Rev Rheumatol. 2017 Sep;13(9):525-537. doi: 10.1038/nrrheum.2017.107. Epub 2017 Jul 13.
6
An immunogenic personal neoantigen vaccine for patients with melanoma.
Nature. 2017 Jul 13;547(7662):217-221. doi: 10.1038/nature22991. Epub 2017 Jul 5.
7
Controversies in Postoperative Irradiation of Oropharyngeal Cancer After Transoral Surgery.
Surg Oncol Clin N Am. 2017 Jul;26(3):357-370. doi: 10.1016/j.soc.2017.01.006. Epub 2017 May 11.
8
Increased PD-1 and TIM-3 TILs during Cetuximab Therapy Inversely Correlate with Response in Head and Neck Cancer Patients.
Cancer Immunol Res. 2017 May;5(5):408-416. doi: 10.1158/2326-6066.CIR-16-0333. Epub 2017 Apr 13.
9
Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer.
Oncoimmunology. 2016 Dec 23;6(1):e1261779. doi: 10.1080/2162402X.2016.1261779. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验