Suppr超能文献

早期细菌生物膜群落中的多代记忆和自适应黏附。

Multigenerational memory and adaptive adhesion in early bacterial biofilm communities.

机构信息

Department of Bioengineering, University of California Los Angeles, CA 90095.

Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095.

出版信息

Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4471-4476. doi: 10.1073/pnas.1720071115. Epub 2018 Mar 20.

Abstract

Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This "adaptive," time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP-TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP-TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of "irreversibly attached" cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation.

摘要

使用多代、单细胞追踪技术,我们探索了 在表面接触的早期阶段(≤20 小时),该微生物的表面细胞群体主要由附着不良的细胞组成(∼95%的细胞停留时间<30 秒,远低于∼1 小时的分裂时间),表面细胞群体几乎没有增加。如果我们从先前暴露于表面的细胞中收获细胞,并将其定向到新鲜表面,我们发现这些表面暴露的细胞及其后代附着牢固,然后迅速增加表面细胞群体。这种“适应性”、延迟的粘附需要我们之前证明对于表面感应至关重要的决定因素:IV 型菌毛(TFP)和 cAMP 信号通过 Pil-Chp-TFP 系统。我们表明,这些适应表面的细胞表现出细胞内 cAMP 水平和相关 TFP 活性的阻尼、耦合、非相位振荡,这种振荡持续多代,而表面未成熟的细胞显示出不相关的 cAMP 和 TFP 活性。这些相关的 cAMP-TFP 振荡有效地赋予细胞谱系中的细胞跨代记忆,可以根据基于 Pil-Chp-TFP 框架的图灵随机模型来理解。重要的是,这些 cAMP-TFP 振荡创造了一种状态,该状态表现为整个谱系中 TFP 运动的协调抑制,并导致与翻译运动几乎为零的表面相关细胞数量急剧增加。这种表面适应状态的出现可以用来定义“不可逆附着”细胞的历史分类,与促进生物膜形成所需的表面细胞群体指数增长的家谱结构相关。

相似文献

1
Multigenerational memory and adaptive adhesion in early bacterial biofilm communities.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4471-4476. doi: 10.1073/pnas.1720071115. Epub 2018 Mar 20.
4
Surface-Induced cAMP Signaling Requires Multiple Features of the Pseudomonas aeruginosa Type IV Pili.
J Bacteriol. 2022 Oct 18;204(10):e0018622. doi: 10.1128/jb.00186-22. Epub 2022 Sep 8.
5
A bacterial sense of touch: T4P retraction motor as a means of surface sensing by PA14.
J Bacteriol. 2024 Jul 25;206(7):e0044223. doi: 10.1128/jb.00442-23. Epub 2024 Jun 4.
6
Force-Induced Changes of PilY1 Drive Surface Sensing by Pseudomonas aeruginosa.
mBio. 2021 Feb 22;13(1):e0375421. doi: 10.1128/mbio.03754-21. Epub 2022 Feb 1.
7
Evidence for the Type IV Pilus Retraction Motor PilT as a Component of the Surface Sensing System in Pseudomonas aeruginosa.
J Bacteriol. 2023 Jul 25;205(7):e0017923. doi: 10.1128/jb.00179-23. Epub 2023 Jun 29.
8
Bacteria use type-IV pili to slingshot on surfaces.
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12617-22. doi: 10.1073/pnas.1105073108. Epub 2011 Jul 18.
9
The surface interface and swimming motility influence surface-sensing responses in .
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2411981121. doi: 10.1073/pnas.2411981121. Epub 2024 Sep 16.
10
Specific type IV pili groups in clinical isolates of Pseudomonas aeruginosa.
Int Microbiol. 2019 Mar;22(1):131-141. doi: 10.1007/s10123-018-00035-3. Epub 2018 Nov 16.

引用本文的文献

2
Multifunctional 3D-Printed Wound Dressings Containing a Combination of Synergistic Antimicrobials in the Management of MRSA Infected Topical Wounds.
ACS Appl Mater Interfaces. 2025 Aug 27;17(34):47951-47968. doi: 10.1021/acsami.5c08968. Epub 2025 Aug 18.
3
Genetic analysis of flagellar-mediated surface sensing by PA14.
J Bacteriol. 2025 Jun 5:e0052024. doi: 10.1128/jb.00520-24.
4
Genetic Analysis of Flagellar-Mediated Surface Sensing by PA14.
bioRxiv. 2024 Dec 5:2024.12.05.627040. doi: 10.1101/2024.12.05.627040.
7
The surface interface and swimming motility influence surface-sensing responses in .
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2411981121. doi: 10.1073/pnas.2411981121. Epub 2024 Sep 16.
8
Phenotypic memory in quorum sensing.
PLoS Comput Biol. 2024 Jul 8;20(7):e1011696. doi: 10.1371/journal.pcbi.1011696. eCollection 2024 Jul.
9
A bacterial sense of touch: T4P retraction motor as a means of surface sensing by PA14.
J Bacteriol. 2024 Jul 25;206(7):e0044223. doi: 10.1128/jb.00442-23. Epub 2024 Jun 4.
10
Data-driven modelling makes quantitative predictions regarding bacteria surface motility.
PLoS Comput Biol. 2024 May 14;20(5):e1012063. doi: 10.1371/journal.pcbi.1012063. eCollection 2024 May.

本文引用的文献

1
Obstruction of pilus retraction stimulates bacterial surface sensing.
Science. 2017 Oct 27;358(6362):535-538. doi: 10.1126/science.aan5706.
2
Second messenger-mediated tactile response by a bacterial rotary motor.
Science. 2017 Oct 27;358(6362):531-534. doi: 10.1126/science.aan5353.
3
High-Speed "4D" Computational Microscopy of Bacterial Surface Motility.
ACS Nano. 2017 Sep 26;11(9):9340-9351. doi: 10.1021/acsnano.7b04738. Epub 2017 Sep 1.
4
Coupling between distant biofilms and emergence of nutrient time-sharing.
Science. 2017 May 12;356(6338):638-642. doi: 10.1126/science.aah4204. Epub 2017 Apr 6.
5
Species-Independent Attraction to Biofilms through Electrical Signaling.
Cell. 2017 Jan 12;168(1-2):200-209.e12. doi: 10.1016/j.cell.2016.12.014.
6
Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.
ACS Nano. 2016 Oct 25;10(10):9183-9192. doi: 10.1021/acsnano.6b05123. Epub 2016 Sep 6.
7
Sensational biofilms: surface sensing in bacteria.
Curr Opin Microbiol. 2016 Apr;30:139-146. doi: 10.1016/j.mib.2016.02.004. Epub 2016 Mar 8.
8
Metabolic co-dependence gives rise to collective oscillations within biofilms.
Nature. 2015 Jul 30;523(7562):550-4. doi: 10.1038/nature14660. Epub 2015 Jul 22.
9
Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7563-8. doi: 10.1073/pnas.1502025112. Epub 2015 Jun 3.
10
Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function.
Environ Microbiol. 2015 Nov;17(11):4148-63. doi: 10.1111/1462-2920.12849. Epub 2015 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验