Suppr超能文献

在吉尔吉斯斯坦的耐利福平及异烟肼结核分枝杆菌中 rpoB、katG、inhA 和 ahp 基因突变。

Mutations of rpoB, katG, inhA and ahp genes in rifampicin and isoniazid-resistant Mycobacterium tuberculosis in Kyrgyz Republic.

机构信息

Institute of Molecular Biology and Medicine, 3 Togolok Moldo street, 720040, Bishkek, Kyrgyzstan.

School of Public Health, Al-Farabi Kazakh National University, Al-Farabi avenue 71, Almaty, Kazakhstan, 050040.

出版信息

BMC Microbiol. 2018 Mar 22;18(1):22. doi: 10.1186/s12866-018-1168-x.

Abstract

BACKGROUND

The aim of this study was to identify mutations of rpoB, katG, inhA and ahp-genes associated Mycobacterium tuberculosis resistance to rifampicin (RIF) and isoniazid (INH) in Kyrgyz Republic. We studied 633 smear samples from the primary pulmonary tuberculosis (TB) patients. We verified Mycobacterium tuberculosis susceptibility to RIF and INH using culture method of absolute concentrations, and commercially available test named "TB-BIOCHIP" (Biochip-IMB, Moscow, Russian Federation).

RESULTS

For RIF-resistance, TB-BIOCHIP's sensitivity and specificity were 88% and 97%, 84% and 95% for INH-resistance, and 90% and 97% for multi-drug resistance (MDR). In RIF-resistant strains, TB-BIOCHIP showed mutations in codons 531 (64.8%), 526 (17.3%), 516 (8.1%), 511 (5.4%), 533 (3.2%), 522 (0.6%) and 513 (0.6%) of rpoB gene. The most prevalent was Ser531 > Leu mutation (63.7%). 91.2% of mutations entailing resistance to INH were in katG gene, 7% in inhA gene, and 1.8% in ahpC gene. Ser315→Thr (88.6%) was the most prevalent mutation leading to resistance to INH.

CONCLUSIONS

In Kyrgyz Republic, the most prevalent mutation in RIF-resistant strains was Ser531 → Leu in rpoB gene, as opposed to Ser315 → Thr in katG gene in INH-resistant Mycobacterium tuberculosis. In Kyrgyz Republic, the major reservoir of MDR Mycobacterium tuberculosis were strains with combined mutations Ser531 → Leu in rpoB gene and Ser315 → Thr in katG gene. TB-BIOCHIP has shown moderate sensitivity with the advantage of obtaining results in only two days.

摘要

背景

本研究旨在鉴定与吉尔吉斯斯坦结核分枝杆菌对利福平(RIF)和异烟肼(INH)耐药相关的 rpoB、katG、inhA 和 ahp-基因的突变。我们研究了 633 份来自原发性肺结核(TB)患者的涂片样本。我们使用绝对浓度培养方法和名为“TB-BIOCHIP”(Biochip-IMB,莫斯科,俄罗斯联邦)的商业可用测试来验证结核分枝杆菌对 RIF 和 INH 的敏感性。

结果

对于 RIF 耐药性,TB-BIOCHIP 的灵敏度和特异性分别为 88%和 97%,对于 INH 耐药性分别为 84%和 95%,对于多药耐药(MDR)分别为 90%和 97%。在 RIF 耐药株中,TB-BIOCHIP 显示 rpoB 基因密码子 531(64.8%)、526(17.3%)、516(8.1%)、511(5.4%)、533(3.2%)、522(0.6%)和 513(0.6%)的突变。最常见的是 Ser531>Leu 突变(63.7%)。导致 INH 耐药的突变中,91.2%发生在 katG 基因,7%发生在 inhA 基因,1.8%发生在 ahpC 基因。导致 INH 耐药的最常见突变是 Ser315→Thr(88.6%)。

结论

在吉尔吉斯斯坦,RIF 耐药株最常见的突变是 rpoB 基因中的 Ser531→Leu,而 INH 耐药结核分枝杆菌中的 katG 基因是 Ser315→Thr。在吉尔吉斯斯坦,MDR 结核分枝杆菌的主要储存库是 rpoB 基因中 Ser531→Leu 与 katG 基因中 Ser315→Thr 联合突变的菌株。TB-BIOCHIP 的灵敏度中等,但优势在于仅需两天即可获得结果。

相似文献

6
7
Molecular mechanism of rifampicin and isoniazid resistance in Mycobacterium tuberculosis from Bangladesh.
Tuberculosis (Edinb). 2012 Nov;92(6):529-34. doi: 10.1016/j.tube.2012.07.005. Epub 2012 Aug 3.
9
Detection of isoniazid and rifampicin resistance by sequencing of katG, inhA, and rpoB genes in Korea.
Korean J Lab Med. 2009 Oct;29(5):455-60. doi: 10.3343/kjlm.2009.29.5.455.

引用本文的文献

5
Large-scale Pan Genomic Analysis of Reveals Key Insights Into Molecular Evolutionary Rate of Specific Processes and Functions.
Evol Bioinform Online. 2024 Mar 25;20:11769343241239463. doi: 10.1177/11769343241239463. eCollection 2024.
6
Overexpression of efflux pump genes is one of the mechanisms causing drug resistance in .
Microbiol Spectr. 2024 Jan 11;12(1):e0251023. doi: 10.1128/spectrum.02510-23. Epub 2023 Dec 4.
7
Evaluating the Sensitivity of Different Molecular Techniques for Detecting Complex in Patients with Pulmonary Infection.
Pol J Microbiol. 2023 Dec 16;72(4):421-431. doi: 10.33073/pjm-2023-040. eCollection 2023 Dec 1.
9
Advances in TB testing.
Adv Clin Chem. 2023;115:33-62. doi: 10.1016/bs.acc.2023.03.003. Epub 2023 Mar 29.
10
Molecular Analysis of Anti-Tuberculosis Drug Resistance of Isolated in the Republic of Korea.
Antibiotics (Basel). 2023 Aug 17;12(8):1324. doi: 10.3390/antibiotics12081324.

本文引用的文献

1
Frequency and Type of Disputed Mutations in Isolates from South Korea.
Tuberc Respir Dis (Seoul). 2017 Jul;80(3):270-276. doi: 10.4046/trd.2017.80.3.270. Epub 2017 Jul 3.
2
Screening mutations in drug-resistant Mycobacterium tuberculosis strains in Yunnan, China.
J Infect Public Health. 2017 Sep-Oct;10(5):630-636. doi: 10.1016/j.jiph.2017.04.008. Epub 2017 Jun 13.
4
Drug resistance-related mutations in multidrug-resistant Mycobacterium tuberculosis isolates from diverse geographical regions.
Int J Mycobacteriol. 2012 Sep;1(3):124-30. doi: 10.1016/j.ijmyco.2012.08.001. Epub 2012 Aug 31.
7
Molecular snapshot of Mycobacterium tuberculosis population structure and drug-resistance in Kyrgyzstan.
Tuberculosis (Edinb). 2013 Sep;93(5):501-7. doi: 10.1016/j.tube.2013.05.008. Epub 2013 Jul 24.
8
Molecular mechanism of rifampicin and isoniazid resistance in Mycobacterium tuberculosis from Bangladesh.
Tuberculosis (Edinb). 2012 Nov;92(6):529-34. doi: 10.1016/j.tube.2012.07.005. Epub 2012 Aug 3.
9
Geographical profile of rpoB gene mutations in rifampicin resistant Mycobacterium tuberculosis isolates in Sri Lanka.
Microb Drug Resist. 2012 Oct;18(5):525-30. doi: 10.1089/mdr.2012.0031. Epub 2012 Jun 25.
10
Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolated in Nepal.
Antimicrob Agents Chemother. 2012 Jun;56(6):2831-6. doi: 10.1128/AAC.06418-11. Epub 2012 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验