Department of Chemistry , University of Washington , Seattle , Washington 98115 , United States.
Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States.
J Phys Chem B. 2018 May 17;122(19):5075-5086. doi: 10.1021/acs.jpcb.7b12532. Epub 2018 May 9.
We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution.
我们进行了一项联合实验和计算研究,研究了在 250meV 至 7.15keV 能区的平衡状态下六氰合铁(Ⅱ)水合配合物。实验和计算包括氰配体的振动光谱、价电子吸收光谱以及使用元素特定共振 X 射线吸收和发射技术的 Fe 1s 芯孔光谱。基于密度泛函理论的量子力学/分子力学分子动力学模拟用于生成明确的溶质-溶剂构型,这些构型作为实验光谱计算的输入,涵盖了从红外到 X 射线波长的范围。在整个大能量窗口中,以相同的理论水平进行光谱模拟,从而可以系统地比较在水相中六氰合铁(Ⅱ)配合物的振动、价电子和芯级光谱中,明确的溶质-溶剂相互作用的影响。尽管六氰合铁(Ⅱ)配合物在溶液中的光谱已经成为了几项研究的主题,但大多数先前的工作都集中在一个狭窄的能量窗口,并且没有在其光谱模拟中考虑明确的溶质-溶剂相互作用。在这项工作中,我们专注于分析六氰合铁(Ⅱ)配合物周围的局部溶剂环境如何影响紫外/可见、X 射线吸收和价电子到芯电子 X 射线发射光谱中特定光谱特征的强度和线形状。这些特征的识别及其与溶质-溶剂相互作用的关系非常重要,因为六氰合铁(Ⅱ)配合物是理解溶液中大量 Fe(II)和 Fe(III)配合物的光化学和光物理性质的模型体系。