Suppr超能文献

利用动态和自动化的 PGS 软件生成基因组结构群体。

Producing genome structure populations with the dynamic and automated PGS software.

机构信息

Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.

出版信息

Nat Protoc. 2018 May;13(5):915-926. doi: 10.1038/nprot.2018.008. Epub 2018 Apr 5.

Abstract

Chromosome conformation capture technologies such as Hi-C are widely used to investigate the spatial organization of genomes. Because genome structures can vary considerably between individual cells of a population, interpreting ensemble-averaged Hi-C data can be challenging, in particular for long-range and interchromosomal interactions. We pioneered a probabilistic approach for the generation of a population of distinct diploid 3D genome structures consistent with all the chromatin-chromatin interaction probabilities from Hi-C experiments. Each structure in the population is a physical model of the genome in 3D. Analysis of these models yields new insights into the causes and the functional properties of the genome's organization in space and time. We provide a user-friendly software package, called PGS, which runs on local machines (for practice runs) and high-performance computing platforms. PGS takes a genome-wide Hi-C contact frequency matrix, along with information about genome segmentation, and produces an ensemble of 3D genome structures entirely consistent with the input. The software automatically generates an analysis report, and provides tools to extract and analyze the 3D coordinates of specific domains. Basic Linux command-line knowledge is sufficient for using this software. A typical running time of the pipeline is ∼3 d with 300 cores on a computer cluster to generate a population of 1,000 diploid genome structures at topological-associated domain (TAD)-level resolution.

摘要

染色体构象捕获技术(如 Hi-C)被广泛用于研究基因组的空间组织。由于群体中单个细胞的基因组结构可能有很大差异,因此解释平均化的 Hi-C 数据具有挑战性,特别是对于长距离和染色体间相互作用。我们率先开发了一种概率方法,用于生成与 Hi-C 实验中的所有染色质-染色质相互作用概率一致的独特二倍体 3D 基因组结构群体。该群体中的每个结构都是基因组在 3D 中的物理模型。对这些模型的分析为理解基因组在空间和时间上的组织的原因和功能特性提供了新的见解。我们提供了一个名为 PGS 的用户友好型软件包,该软件可以在本地机器(用于实践运行)和高性能计算平台上运行。PGS 采用全基因组 Hi-C 接触频率矩阵,以及关于基因组分割的信息,并生成与输入完全一致的 3D 基因组结构群体。该软件会自动生成分析报告,并提供提取和分析特定结构域的 3D 坐标的工具。使用此软件只需具备基本的 Linux 命令行知识。在计算机集群上使用 300 个核,典型的运行时间约为 3 天,可生成拓扑相关域(TAD)级分辨率的 1000 个二倍体基因组结构群体。

相似文献

1
Producing genome structure populations with the dynamic and automated PGS software.
Nat Protoc. 2018 May;13(5):915-926. doi: 10.1038/nprot.2018.008. Epub 2018 Apr 5.
2
Population-based 3D genome structure analysis reveals driving forces in spatial genome organization.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1663-72. doi: 10.1073/pnas.1512577113. Epub 2016 Mar 7.
3
Computational 3D genome modeling using Chrom3D.
Nat Protoc. 2018 May;13(5):1137-1152. doi: 10.1038/nprot.2018.009. Epub 2018 Apr 26.
4
Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors.
PLoS Comput Biol. 2017 Jul 19;13(7):e1005665. doi: 10.1371/journal.pcbi.1005665. eCollection 2017 Jul.
5
HiCHap: a package to correct and analyze the diploid Hi-C data.
BMC Genomics. 2020 Oct 27;21(1):746. doi: 10.1186/s12864-020-07165-x.
7
4Cin: A computational pipeline for 3D genome modeling and virtual Hi-C analyses from 4C data.
PLoS Comput Biol. 2018 Mar 9;14(3):e1006030. doi: 10.1371/journal.pcbi.1006030. eCollection 2018 Mar.
8
An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
Genome Res. 2016 Dec;26(12):1697-1709. doi: 10.1101/gr.205062.116. Epub 2016 Oct 27.
9
Evaluation of 3D Chromatin Interactions Using Hi-C.
Methods Mol Biol. 2020;2117:65-78. doi: 10.1007/978-1-0716-0301-7_3.
10
Reconstructing spatial organizations of chromosomes through manifold learning.
Nucleic Acids Res. 2018 May 4;46(8):e50. doi: 10.1093/nar/gky065.

引用本文的文献

1
The challenge of chromatin model comparison and validation: A project from the first international 4D Nucleome Hackathon.
PLoS Comput Biol. 2025 Aug 19;21(8):e1013358. doi: 10.1371/journal.pcbi.1013358. eCollection 2025 Aug.
2
3D genome organization shapes DNA damage susceptibility to platinum-based drugs.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf315.
3
PDB-IHM: A System for Deposition, Curation, Validation, and Dissemination of Integrative Structures.
J Mol Biol. 2025 Aug 1;437(15):168963. doi: 10.1016/j.jmb.2025.168963. Epub 2025 Jan 27.
5
Visualization of chromosomal reorganization induced by heterologous fusions in the mammalian nucleus.
Nat Commun. 2025 Feb 10;16(1):1485. doi: 10.1038/s41467-024-55582-3.
7
Hi-C-guided many-polymer model to decipher 3D genome organization.
Biophys J. 2024 Aug 20;123(16):2574-2583. doi: 10.1016/j.bpj.2024.06.023. Epub 2024 Jun 25.
8
Hi-BDiSCO: folding 3D mesoscale genome structures from Hi-C data using brownian dynamics.
Nucleic Acids Res. 2024 Jan 25;52(2):583-599. doi: 10.1093/nar/gkad1121.
9
Evaluating the role of the nuclear microenvironment in gene function by population-based modeling.
Nat Struct Mol Biol. 2023 Aug;30(8):1193-1206. doi: 10.1038/s41594-023-01036-1. Epub 2023 Aug 14.
10
Techniques for and challenges in reconstructing 3D genome structures from 2D chromosome conformation capture data.
Curr Opin Cell Biol. 2023 Aug;83:102209. doi: 10.1016/j.ceb.2023.102209. Epub 2023 Jul 26.

本文引用的文献

1
The three-dimensional genome organization of Drosophila melanogaster through data integration.
Genome Biol. 2017 Jul 31;18(1):145. doi: 10.1186/s13059-017-1264-5.
2
3D structures of individual mammalian genomes studied by single-cell Hi-C.
Nature. 2017 Apr 6;544(7648):59-64. doi: 10.1038/nature21429. Epub 2017 Mar 13.
3
Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts.
Genome Biol. 2017 Jan 30;18(1):21. doi: 10.1186/s13059-016-1146-2.
4
Transferable model for chromosome architecture.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12168-12173. doi: 10.1073/pnas.1613607113. Epub 2016 Sep 29.
5
Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom.
Cell Syst. 2016 Jul;3(1):99-101. doi: 10.1016/j.cels.2015.07.012.
7
3D-GNOME: an integrated web service for structural modeling of the 3D genome.
Nucleic Acids Res. 2016 Jul 8;44(W1):W288-93. doi: 10.1093/nar/gkw437. Epub 2016 May 16.
8
Population-based 3D genome structure analysis reveals driving forces in spatial genome organization.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1663-72. doi: 10.1073/pnas.1512577113. Epub 2016 Mar 7.
10
MOGEN: a tool for reconstructing 3D models of genomes from chromosomal conformation capturing data.
Bioinformatics. 2016 May 1;32(9):1286-92. doi: 10.1093/bioinformatics/btv754. Epub 2015 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验