Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
Physiol Plant. 2019 Feb;165(2):134-143. doi: 10.1111/ppl.12743. Epub 2018 Aug 20.
The combined drought and salinity stresses pose a serious challenge for crop production, but the physiological mechanisms behind the stresses responses in wheat remains poorly understood. Greenhouse pot experiment was performed to study differences in genotype response to the single and combined (D + S) stresses of drought (4% soil moisture, D) and salinity (100 mM NaCl, S) using two wheat genotypes: Jimai22 (salt tolerant) and Yangmai20 (salt-sensitive). Results showed that salinity, drought and/or D + S severely reduces plant growth, biomass and net photosynthetic rate, with a greater effect observed in Yangmai20 than Jimai22. A notable improvement in water use efficiency (WUE) by 239, 77 and 103% under drought, salinity and D + S, respectively, was observed in Jimai22. Moreover, Jimai22 recorded higher root K concentration in drought and salinity stressed condition and shoot K under salinity alone than that of Yangmai20. Jimai22 showed lower increase in malondialdehyde (MDA) accumulation, but higher activities of superoxide dismutase (SOD, EC 1.15.1.1) and guaicol peroxidase (POD, EC 1.11.1.7), under single and combined stresses, and catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) under single stress. Our results suggest that high tolerance of Jimai22 in both drought and D + S stresses is closely associated with larger root length, higher Fv/Fm and less MDA contents and improved capacity of SOD and POD. Moreover, under drought Jimai22 tolerance is firmly related to higher root K concentration level and low level of Na , high-net photosynthetic rate and WUE as well as increased CAT and APX activities to scavenge reactive oxygen species.
干旱和盐胁迫的综合作用对作物生产构成了严重挑战,但人们对小麦应对这些胁迫的生理机制仍知之甚少。本研究通过温室盆栽试验,利用两种小麦品种(耐盐品种吉迈 22 和盐敏感品种扬麦 20)研究了单一和复合(干旱+盐胁迫,D+S)胁迫下基因型对干旱(土壤含水量 4%,D)和盐胁迫(100 mM NaCl,S)的响应差异。结果表明,盐胁迫、干旱和/或 D+S 严重抑制了植株生长、生物量和净光合速率,扬麦 20 的抑制作用大于吉迈 22。在干旱、盐胁迫和 D+S 胁迫下,吉迈 22 的水分利用效率(WUE)分别显著提高了 239%、77%和 103%。此外,在干旱和盐胁迫条件下,吉迈 22 的根 K 浓度较高,而在单独盐胁迫下,吉迈 22 的茎 K 浓度较高。与扬麦 20 相比,吉迈 22 在单一和复合胁迫下 MDA 积累增加较少,而 SOD(EC 1.15.1.1)和 POD(EC 1.11.1.7)活性较高,在单一胁迫下 CAT(EC 1.11.1.6)和 APX(EC 1.11.1.11)活性较高。结果表明,吉迈 22 在干旱和 D+S 胁迫下的高耐受性与较大的根长、较高的 Fv/Fm 和较少的 MDA 含量以及较高的 SOD 和 POD 活性有关。此外,在干旱胁迫下,吉迈 22 的耐胁迫性与较高的根 K 浓度水平和较低的 Na 水平、较高的净光合速率和 WUE以及增加的 CAT 和 APX 活性有关,这些活性有助于清除活性氧。