Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
Evid Based Ment Health. 2018 May;21(2):72-76. doi: 10.1136/eb-2018-102911. Epub 2018 Apr 12.
Meta-analysing studies with low event rates is challenging as some of the standard methods for meta-analysis are not well suited to handle rare outcomes. This is more evident when some studies have zero events in one or both treatment groups. In this article, we discuss why rare events require special attention in meta-analysis, we present an overview of some approaches suitable for meta-analysing rare events and we provide practical recommendations for their use.
We go through several models suggested in the literature for performing a rare events meta-analysis, highlighting their respective advantages and limitations. We illustrate these models using a published example from mental health. We provide the software code needed to perform all analyses in the appendix.
Different methods may give different results, and using a suboptimal approach may lead to erroneous conclusions. When data are very sparse, the choice between the available methods may have a large impact on the results. Methods that use the so-called continuity correction (eg, adding 0.5 to the number of events and non-events in studies with zero events in one treatment group) may lead to biased estimates.
Researchers should define the primary analysis a priori, in order to avoid selective reporting. A sensitivity analysis using a range of methods should be used to assess the robustness of results. Suboptimal methods such as using a continuity correction should be avoided.
低事件发生率的研究进行荟萃分析具有挑战性,因为荟萃分析的一些标准方法并不适合处理罕见结局。当一些研究在一个或两个治疗组中都没有零事件时,这种情况就更加明显了。本文讨论了为什么罕见事件在荟萃分析中需要特别关注,概述了一些适合罕见事件荟萃分析的方法,并提供了使用这些方法的实用建议。
我们详细讨论了文献中提出的几种用于进行罕见事件荟萃分析的模型,突出了它们各自的优缺点。我们使用一篇心理健康领域的已发表示例来说明这些模型。我们在附录中提供了执行所有分析所需的软件代码。
不同的方法可能会产生不同的结果,使用不合适的方法可能会导致错误的结论。当数据非常稀疏时,在可用方法之间进行选择可能会对结果产生重大影响。使用所谓的连续性校正(例如,在一个治疗组中没有零事件的研究中,将事件和非事件的数量各加 0.5)的方法可能会导致有偏估计。
研究人员应该事先定义主要分析,以避免选择性报告。应该使用一系列方法进行敏感性分析,以评估结果的稳健性。应该避免使用次优方法,例如使用连续性校正。