Suppr超能文献

叶酸促进S-腺苷甲硫氨酸反应和微生物甲基化循环,并提高反刍动物的生产性能和繁殖能力。

Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction.

作者信息

Abbasi Imtiaz Hussain Raja, Abbasi Farzana, Wang Lamei, Abd El Hack Mohamed E, Swelum Ayman A, Hao Ren, Yao Junhu, Cao Yangchun

机构信息

Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.

School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China.

出版信息

AMB Express. 2018 Apr 23;8(1):65. doi: 10.1186/s13568-018-0592-5.

Abstract

Folate has gained significant attention due to its vital role in biological methylation and epigenetic machinery. Folate, or vitamin (B), is only produced through a de novo mechanism by plants and micro-organisms in the rumen of mature animals. Although limited research has been conducted on folate in ruminants, it has been noted that ruminal synthesis could not maintain folate levels in high yielding dairy animals. Folate has an essential role in one-carbon metabolism and is a strong antiproliferative agent. Folate increases DNA stability, being crucial for DNA synthesis and repair, the methylation cycle, and preventing oxidation of DNA by free radicals. Folate is also critical for cell division, metabolism of proteins, synthesis of purine and pyrimidine, and increasing the de novo delivery of methyl groups and S-adenosylmethionine. However, in ruminants, metabolism of B and B vitamins are closely connected and utilization of folate by cells is significantly affected by B vitamin concentration. Supplementation of folate through diet, particularly in early lactation, enhanced metabolic efficiency, lactational performance, and nutritional quality of milk. Impaired absorption, oxidative degradation, or deficient supply of folate in ruminants affects DNA stability, cell division, homocysteine remethylation to methionine, de novo synthesis of S-adenosylmethionine, and increases DNA hypomethylation, uracil misincorporation into DNA, chromosomal damage, abnormal cell growth, oxidative species, premature birth, low calf weight, placental tube defects, and decreases production and reproduction of ruminant animals. However, more studies are needed to overcome these problems and reduce enormous dietary supplement waste and impaired absorption of folate in ruminants. This review was aimed to highlight the vital role of folic acid in ruminants performance.

摘要

叶酸因其在生物甲基化和表观遗传机制中的重要作用而备受关注。叶酸,即维生素B,仅由植物和成熟动物瘤胃中的微生物通过从头合成机制产生。尽管关于反刍动物叶酸的研究有限,但已经注意到瘤胃合成无法维持高产奶牛的叶酸水平。叶酸在一碳代谢中起重要作用,是一种强大的抗增殖剂。叶酸可提高DNA稳定性,对DNA合成和修复、甲基化循环以及防止自由基氧化DNA至关重要。叶酸对于细胞分裂、蛋白质代谢、嘌呤和嘧啶的合成以及增加甲基基团和S-腺苷甲硫氨酸的从头供应也至关重要。然而,在反刍动物中,B族维生素的代谢密切相关,细胞对叶酸的利用受B族维生素浓度的显著影响。通过饮食补充叶酸,尤其是在泌乳早期,可提高代谢效率、泌乳性能和牛奶的营养质量。反刍动物中叶酸吸收受损、氧化降解或供应不足会影响DNA稳定性、细胞分裂、同型半胱氨酸再甲基化为甲硫氨酸、S-腺苷甲硫氨酸的从头合成,并增加DNA低甲基化、尿嘧啶错误掺入DNA、染色体损伤、异常细胞生长、氧化应激、早产、犊牛体重低、胎盘管缺陷,并降低反刍动物的生产和繁殖能力。然而,需要更多的研究来克服这些问题,并减少反刍动物中大量的膳食补充剂浪费和叶酸吸收受损的情况。本综述旨在强调叶酸在反刍动物生产性能中的重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b2d/5913057/18cf74a6e3f3/13568_2018_592_Fig1_HTML.jpg

相似文献

2
Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity.
Mutat Res. 2012 May 1;733(1-2):21-33. doi: 10.1016/j.mrfmmm.2011.11.003. Epub 2011 Nov 7.
3
The role of folic acid and Vitamin B12 in genomic stability of human cells.
Mutat Res. 2001 Apr 18;475(1-2):57-67. doi: 10.1016/s0027-5107(01)00079-3.
4
Vitamin B , folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation.
J Inherit Metab Dis. 2019 Jul;42(4):673-685. doi: 10.1002/jimd.12009. Epub 2019 Jan 28.
5
Symposium review: One-carbon metabolism and methyl donor nutrition in the dairy cow.
J Dairy Sci. 2020 Jun;103(6):5668-5683. doi: 10.3168/jds.2019-17319. Epub 2020 Apr 8.
6
Folate and vitamin B12.
Proc Nutr Soc. 1999 May;58(2):441-8. doi: 10.1017/s0029665199000580.
9
Folic acid with or without vitamin B12 for cognition and dementia.
Cochrane Database Syst Rev. 2003(4):CD004514. doi: 10.1002/14651858.CD004514.

引用本文的文献

1
A Comprehensive Review of Fortification, Bioavailability, and Health Benefits of Folate.
Int J Mol Sci. 2025 Aug 9;26(16):7703. doi: 10.3390/ijms26167703.
2
Epi-nutrients for cancer prevention: Molecular mechanisms and emerging insights.
Cell Biol Toxicol. 2025 Jul 15;41(1):116. doi: 10.1007/s10565-025-10054-2.
4
Use of Natural Biomolecules in Animal Feed to Enhance Livestock Reproduction.
Int J Mol Sci. 2025 Mar 5;26(5):2328. doi: 10.3390/ijms26052328.
6
Postbiotics as Adjuvant Therapy in Cancer Care.
Nutrients. 2024 Jul 24;16(15):2400. doi: 10.3390/nu16152400.
7
Altered S-AdenosylMethionine availability impacts dNTP pools in Saccharomyces cerevisiae.
Yeast. 2024 Aug;41(8):513-524. doi: 10.1002/yea.3973. Epub 2024 Jul 3.
9
Relationship between MTHFR gene polymorphism and risk of thrombosis in postoperative patients with colorectal cancer.
Exp Ther Med. 2023 Nov 3;26(6):588. doi: 10.3892/etm.2023.12287. eCollection 2023 Dec.

本文引用的文献

5
Reviving the RNA World: An Insight into the Appearance of RNA Methyltransferases.
Front Genet. 2016 Jun 6;7:99. doi: 10.3389/fgene.2016.00099. eCollection 2016.
6
Genetic variants in the folate pathway and the risk of neural tube defects: a meta-analysis of the published literature.
PLoS One. 2013 Apr 4;8(4):e59570. doi: 10.1371/journal.pone.0059570. Print 2013.
7
The continuing challenge of understanding, preventing, and treating neural tube defects.
Science. 2013 Mar 1;339(6123):1222002. doi: 10.1126/science.1222002.
8
A unique regulatory phase of DNA methylation in the early mammalian embryo.
Nature. 2012 Mar 28;484(7394):339-44. doi: 10.1038/nature10960.
9
Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role.
Adv Nutr. 2012 Jan;3(1):21-38. doi: 10.3945/an.111.000992. Epub 2012 Jan 5.
10
Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity.
Mutat Res. 2012 May 1;733(1-2):21-33. doi: 10.1016/j.mrfmmm.2011.11.003. Epub 2011 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验