Suppr超能文献

基于 CRISPR/Cas9 的基因组编辑的非病毒递送系统:挑战与机遇。

Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities.

机构信息

Department of PET Center, Xiangya Hospital, Central South University, Changsha, 410008, China; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.

Department of PET Center, Xiangya Hospital, Central South University, Changsha, 410008, China.

出版信息

Biomaterials. 2018 Jul;171:207-218. doi: 10.1016/j.biomaterials.2018.04.031. Epub 2018 Apr 18.

Abstract

In recent years, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) genome editing systems have become one of the most robust platforms in basic biomedical research and therapeutic applications. To date, efficient in vivo delivery of the CRISPR/Cas9 system to the targeted cells remains a challenge. Although viral vectors have been widely used in the delivery of the CRISPR/Cas9 system in vitro and in vivo, their fundamental shortcomings, such as the risk of carcinogenesis, limited insertion size, immune responses and difficulty in large-scale production, severely limit their further applications. Alternative non-viral delivery systems for CRISPR/Cas9 are urgently needed. With the rapid development of non-viral vectors, lipid- or polymer-based nanocarriers have shown great potential for CRISPR/Cas9 delivery. In this review, we analyze the pros and cons of delivering CRISPR/Cas9 systems in the form of plasmid, mRNA, or protein and then discuss the limitations and challenges of CRISPR/Cas9-based genome editing. Furthermore, current non-viral vectors that have been applied for CRISPR/Cas9 delivery in vitro and in vivo are outlined in details. Finally, critical obstacles for non-viral delivery of CRISPR/Cas9 system are highlighted and promising strategies to overcome these barriers are proposed.

摘要

近年来,CRISPR(成簇规律间隔短回文重复)/Cas(CRISPR 相关)基因组编辑系统已成为基础生物医学研究和治疗应用中最强大的平台之一。迄今为止,将 CRISPR/Cas9 系统有效递送到靶向细胞仍然是一个挑战。尽管病毒载体已广泛用于 CRISPR/Cas9 系统的体外和体内递送,但它们存在致癌风险、插入大小有限、免疫反应和大规模生产困难等固有缺点,严重限制了它们的进一步应用。因此,迫切需要替代的非病毒递送系统。随着非病毒载体的快速发展,基于脂质或聚合物的纳米载体在 CRISPR/Cas9 递送上显示出巨大的潜力。在本文中,我们分析了以质粒、mRNA 或蛋白质形式递送 CRISPR/Cas9 系统的优缺点,然后讨论了基于 CRISPR/Cas9 的基因组编辑的局限性和挑战。此外,详细概述了目前已应用于 CRISPR/Cas9 体外和体内递送的非病毒载体。最后,强调了非病毒递送 CRISPR/Cas9 系统的关键障碍,并提出了克服这些障碍的有前途的策略。

相似文献

1
Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities.
Biomaterials. 2018 Jul;171:207-218. doi: 10.1016/j.biomaterials.2018.04.031. Epub 2018 Apr 18.
2
Lipid-, Inorganic-, Polymer-, and DNA-Based Nanocarriers for Delivery of the CRISPR/Cas9 system.
Chembiochem. 2023 Aug 15;24(16):e202300180. doi: 10.1002/cbic.202300180. Epub 2023 Jul 25.
3
Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing.
Drug Deliv Transl Res. 2023 May;13(5):1500-1519. doi: 10.1007/s13346-023-01320-z. Epub 2023 Mar 29.
4
CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery.
Chem Rev. 2017 Aug 9;117(15):9874-9906. doi: 10.1021/acs.chemrev.6b00799. Epub 2017 Jun 22.
5
Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing.
Macromol Rapid Commun. 2019 Mar;40(5):e1800068. doi: 10.1002/marc.201800068. Epub 2018 Apr 30.
6
Delivery of CRISPR/Cas9 for therapeutic genome editing.
J Gene Med. 2019 Jul;21(7):e3107. doi: 10.1002/jgm.3107.
7
Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for CRISPR/Cas-Based Genome Editing.
ACS Nano. 2020 Aug 25;14(8):9243-9262. doi: 10.1021/acsnano.0c04707. Epub 2020 Jul 22.
8
Pre-clinical non-viral vectors exploited for CRISPR/Cas9 gene editing: an overview.
Biomater Sci. 2022 Jun 28;10(13):3410-3432. doi: 10.1039/d1bm01452h.
10

引用本文的文献

1
CRISPR/Cas9 in colorectal cancer: Revolutionizing precision oncology through genome editing and targeted therapeutics.
Iran J Basic Med Sci. 2025;28(10):1279-1300. doi: 10.22038/ijbms.2025.87531.18902.
2
Towards the elimination of infectious HPV: exploiting CRISPR/Cas innovations.
Front Cell Infect Microbiol. 2025 Aug 4;15:1627668. doi: 10.3389/fcimb.2025.1627668. eCollection 2025.
3
Viral and nonviral nanocarriers for CRISPR-based gene editing.
Nano Res. 2024 Oct;17(10):8904-8925. doi: 10.1007/s12274-024-6748-5. Epub 2024 Jun 20.
4
CRISPR screening approaches in breast cancer research.
Cancer Metastasis Rev. 2025 Jul 12;44(3):59. doi: 10.1007/s10555-025-10275-1.
6
Innovative approaches for the treatment of stroke: a recent update.
Naunyn Schmiedebergs Arch Pharmacol. 2025 May 29. doi: 10.1007/s00210-025-04288-4.
7
Engineered exosomes: a promising drug delivery platform with therapeutic potential.
Front Mol Biosci. 2025 May 9;12:1583992. doi: 10.3389/fmolb.2025.1583992. eCollection 2025.
8
Harnessing CRISPR potential for intervertebral disc regeneration strategies.
Front Bioeng Biotechnol. 2025 May 8;13:1562412. doi: 10.3389/fbioe.2025.1562412. eCollection 2025.
9
CRISPR/Cas9 Delivery Systems to Enhance Gene Editing Efficiency.
Int J Mol Sci. 2025 May 6;26(9):4420. doi: 10.3390/ijms26094420.
10
Design of lipid nanoparticle (LNP) containing genetic material CRISPR/Cas9 for familial hypercholesterolemia.
Narra J. 2025 Apr;5(1):e2217. doi: 10.52225/narra.v5i1.2217. Epub 2025 Apr 15.

本文引用的文献

1
Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA induces homology-directed DNA repair.
Nat Biomed Eng. 2017;1:889-901. doi: 10.1038/s41551-017-0137-2. Epub 2017 Oct 2.
2
Targeted Delivery of CRISPR/Cas9-Mediated Cancer Gene Therapy via Liposome-Templated Hydrogel Nanoparticles.
Adv Funct Mater. 2017 Dec 8;27(46). doi: 10.1002/adfm.201703036. Epub 2017 Oct 16.
4
Ga-BBN-RGD PET/CT for GRPR and Integrin αβ Imaging in Patients with Breast Cancer.
Theranostics. 2018 Jan 1;8(4):1121-1130. doi: 10.7150/thno.22601. eCollection 2018.
5
Engineering the Delivery System for CRISPR-Based Genome Editing.
Trends Biotechnol. 2018 Feb;36(2):173-185. doi: 10.1016/j.tibtech.2017.11.006. Epub 2018 Jan 2.
6
Thermo-triggered Release of CRISPR-Cas9 System by Lipid-Encapsulated Gold Nanoparticles for Tumor Therapy.
Angew Chem Int Ed Engl. 2018 Feb 5;57(6):1491-1496. doi: 10.1002/anie.201708689. Epub 2018 Jan 15.
7
In vivo genome editing improves motor function and extends survival in a mouse model of ALS.
Sci Adv. 2017 Dec 20;3(12):eaar3952. doi: 10.1126/sciadv.aar3952. eCollection 2017 Dec.
8
Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework.
J Am Chem Soc. 2018 Jan 10;140(1):143-146. doi: 10.1021/jacs.7b11754. Epub 2017 Dec 27.
9
Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing.
Nanoscale. 2018 Jan 18;10(3):1063-1071. doi: 10.1039/c7nr07999k.
10
Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents.
Nature. 2018 Jan 11;553(7687):217-221. doi: 10.1038/nature25164. Epub 2017 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验