Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA.
Center for Biophysics & Computational Biology, Temple University, Philadelphia, PA 19122, USA; Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
J Mol Biol. 2018 Jul 6;430(14):2164-2180. doi: 10.1016/j.jmb.2018.05.007. Epub 2018 May 16.
Many signaling proteins consist of globular domains connected by flexible linkers that allow for substantial domain motion. Because these domains often serve as complementary functional modules, the possibility of functionally important domain motions arises. To explore this possibility, we require knowledge of the ensemble of protein conformations sampled by interdomain motion. Measurements of NMR residual dipolar couplings (RDCs) of backbone HN bonds offer a per-residue characterization of interdomain dynamics, as the couplings are sensitive to domain orientation. A challenge in reaching this potential is the need to interpret the RDCs as averages over dynamic ensembles of domain conformations. Here, we address this challenge by introducing an efficient protocol for generating conformational ensembles appropriate for flexible, multi-domain proteins. The protocol uses map-restrained self-guided Langevin dynamics simulations to promote collective, interdomain motion while restraining the internal domain motion to near rigidity. Critically, the simulations retain an all-atom description for facile inclusion of site-specific NMR RDC restraints. The result is the rapid generation of conformational ensembles consistent with the RDC data. We illustrate this protocol on human Pin1, a two-domain peptidyl-prolyl isomerase relevant for cancer and Alzheimer's disease. The results include the ensemble of domain orientations sampled by Pin1, as well as those of a dysfunctional variant, I28A-Pin1. The differences between the ensembles corroborate our previous spin relaxation results that showed weakened interdomain contact in the I28A variant relative to wild type. Our protocol extends our abilities to explore the functional significance of protein domain motions.
许多信号蛋白由球形结构域组成,这些结构域通过柔性连接体连接,允许结构域发生大量运动。由于这些结构域通常作为互补的功能模块,因此会出现功能重要的结构域运动的可能性。为了探索这种可能性,我们需要了解结构域间运动所采样的蛋白质构象的集合。测量核磁共振残磁偶极耦合(RDC)的 HN 键提供了结构域动力学的残基间特征,因为这些偶极耦合对结构域取向敏感。实现这一潜力的一个挑战是需要将 RDC 解释为结构域构象动态集合的平均值。在这里,我们通过引入一种有效的方案来解决这一挑战,该方案适用于灵活的多结构域蛋白质。该方案使用图谱约束的自导向朗之万动力学模拟来促进集体结构域间运动,同时将内部结构域运动限制在接近刚性的范围内。至关重要的是,模拟保留了全原子描述,以便轻松纳入针对特定位置的 NMR RDC 约束。结果是快速生成与 RDC 数据一致的构象集合。我们在人类 Pin1 上展示了该方案,Pin1 是一种与癌症和阿尔茨海默病相关的双结构域肽基脯氨酰异构酶。结果包括 Pin1 采样的结构域取向的集合,以及功能失调变体 I28A-Pin1 的集合。这些集合之间的差异证实了我们之前的自旋弛豫结果,表明 I28A 变体中结构域间的接触变弱。我们的方案扩展了我们探索蛋白质结构域运动功能意义的能力。