Suppr超能文献

基于全光学技术的高通量功能筛选方法,对人诱导多能干细胞源性肌萎缩侧索硬化症运动神经元模型进行表型分析。

All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS.

机构信息

The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Stem Cell Reports. 2018 Jun 5;10(6):1991-2004. doi: 10.1016/j.stemcr.2018.04.020. Epub 2018 May 17.

Abstract

Human induced pluripotent stem cell (iPSC)-derived neurons are an attractive substrate for modeling disease, yet the heterogeneity of these cultures presents a challenge for functional characterization by manual patch-clamp electrophysiology. Here, we describe an optimized all-optical electrophysiology, "Optopatch," pipeline for high-throughput functional characterization of human iPSC-derived neuronal cultures. We demonstrate the method in a human iPSC-derived motor neuron (iPSC-MN) model of amyotrophic lateral sclerosis (ALS). In a comparison of iPSC-MNs with an ALS-causing mutation (SOD1 A4V) with their genome-corrected controls, the mutants showed elevated spike rates under weak or no stimulus and greater likelihood of entering depolarization block under strong optogenetic stimulus. We compared these results with numerical simulations of simple conductance-based neuronal models and with literature results in this and other iPSC-based models of ALS. Our data and simulations suggest that deficits in slowly activating potassium channels may underlie the changes in electrophysiology in the SOD1 A4V mutation.

摘要

人类诱导多能干细胞(iPSC)衍生神经元是模拟疾病的理想底物,但这些培养物的异质性给手动膜片钳电生理学的功能特征带来了挑战。在这里,我们描述了一种优化的全光学电生理学“Optopatch”,用于高通量功能表征人类 iPSC 衍生神经元培养物。我们在肌萎缩侧索硬化症(ALS)的人类 iPSC 衍生运动神经元(iPSC-MN)模型中演示了该方法。在与 ALS 致病突变(SOD1 A4V)的 iPSC-MN 及其基因组校正对照的比较中,突变体在弱刺激或无刺激下表现出更高的尖峰率,并且在强光遗传学刺激下更容易进入去极化阻断。我们将这些结果与基于简单电导率的神经元模型的数值模拟以及本研究和其他基于 iPSC 的 ALS 模型中的文献结果进行了比较。我们的数据和模拟表明,缓慢激活的钾通道缺陷可能是 SOD1 A4V 突变中电生理学变化的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4037/5993648/5f9ad20f4464/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验