Suppr超能文献

牛成熟核髓和脊索细胞对流体静压和葡萄糖限制的差异反应。

Differential Response of Bovine Mature Nucleus Pulposus and Notochordal Cells to Hydrostatic Pressure and Glucose Restriction.

机构信息

Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.

Department of Chemical and Materials Engineering, Faculty of Engineering, University of Auckland, Auckland, New Zealand.

出版信息

Cartilage. 2020 Apr;11(2):221-233. doi: 10.1177/1947603518775795. Epub 2018 May 29.

Abstract

OBJECTIVE

The nucleus pulposus of the human intervertebral disc contains 2 cell types: notochordal (NC) and mature nucleus pulposus (MNP) cells. NC cell loss is associated with disc degeneration and this process may be initiated by mechanical stress and/or nutrient deprivation. This study aimed to investigate the functional responses of NC and MNP cells to hydrostatic pressures and glucose restriction.

DESIGN

Bovine MNP and NC cells were cultured in 3-dimensional alginate beads under low (0.4-0.8 MPa) and high (1.6-2.4 MPa) dynamic pressure for 24 hours. Cells were cultured in either physiological (5.5 mM) glucose media or glucose-restriction (0.55 mM) media. Finally, the combined effect of glucose restriction and high pressure was examined.

RESULTS

Cell viability and notochordal phenotypic markers were not significantly altered in response to pressure or glucose restriction. MNP cells responded to low pressure with an increase in glycosaminoglycan (GAG) production while high pressure significantly decreased ACAN gene expression compared with atmospheric controls. NC cells showed no response in matrix gene expression or GAG production with either loading regime. Glucose restriction decreased NC cell TIMP-1 expression but had no effect on MNP cells. The combination of glucose restriction and high pressure only affected MNP cell gene expression, with decreased ACAN, Col2α1, and ADAMTS-5 expression.

CONCLUSION

This study shows that NC cells are more resistant to acute mechanical stresses than MNP cells and provides a strong rationale for future studies to further our understanding the role of NC cells within the disc, and the effects of long-term exposure to physical stresses.

摘要

目的

人类椎间盘的髓核包含 2 种细胞类型:脊索(NC)和成熟的髓核(MNP)细胞。NC 细胞的丢失与椎间盘退变有关,这一过程可能是由机械应力和/或营养剥夺引起的。本研究旨在研究 NC 和 MNP 细胞对静水压力和葡萄糖限制的功能反应。

设计

牛 MNP 和 NC 细胞在低(0.4-0.8 MPa)和高(1.6-2.4 MPa)动态压力下在 3 维藻酸盐珠中培养 24 小时。细胞在生理(5.5 mM)葡萄糖培养基或葡萄糖限制(0.55 mM)培养基中培养。最后,研究了葡萄糖限制和高压的联合效应。

结果

细胞活力和脊索表型标志物对压力或葡萄糖限制没有明显改变。MNP 细胞对低压力的反应是糖胺聚糖(GAG)产量增加,而高压力与大气对照相比,显著降低了 ACAN 基因表达。NC 细胞在基质基因表达或 GAG 产生方面对任一加载状态均无反应。葡萄糖限制降低了 NC 细胞 TIMP-1 的表达,但对 MNP 细胞没有影响。葡萄糖限制和高压力的组合仅影响 MNP 细胞的基因表达,降低了 ACAN、Col2α1 和 ADAMTS-5 的表达。

结论

本研究表明,NC 细胞比 MNP 细胞对急性机械应激更具抵抗力,并为进一步研究提供了有力的依据,以了解 NC 细胞在椎间盘内的作用,以及长期暴露于物理应激的影响。

相似文献

1
2
Same-species phenotypic comparison of notochordal and mature nucleus pulposus cells.
Eur Spine J. 2015 Sep;24(9):1976-85. doi: 10.1007/s00586-014-3697-9. Epub 2014 Dec 5.
3
Coculture with Partial Digestion Notochordal Cell-Rich Nucleus Pulposus Tissue Activates Degenerative Human Nucleus Pulposus Cells.
Tissue Eng Part A. 2017 Aug;23(15-16):837-846. doi: 10.1089/ten.TEA.2016.0428. Epub 2017 Feb 28.
4
Notochordal Cell Matrix As a Therapeutic Agent for Intervertebral Disc Regeneration.
Tissue Eng Part A. 2019 Jun;25(11-12):830-841. doi: 10.1089/ten.TEA.2018.0026. Epub 2018 Jun 29.
9
Activation of intervertebral disc cells by co-culture with notochordal cells, conditioned medium and hypoxia.
BMC Musculoskelet Disord. 2014 Dec 11;15:422. doi: 10.1186/1471-2474-15-422.

引用本文的文献

2
Low hydrostatic pressure promotes functional homeostasis of nucleus pulposus cells through the TRPV4/CRT/FA complex axis.
Front Med (Lausanne). 2025 Jan 29;12:1531907. doi: 10.3389/fmed.2025.1531907. eCollection 2025.
4
The role of biomechanical factors in models of intervertebral disc degeneration across multiple length scales.
APL Bioeng. 2023 May 8;7(2):021501. doi: 10.1063/5.0137698. eCollection 2023 Jun.
5
Immuno-Modulatory Effects of Intervertebral Disc Cells.
Front Cell Dev Biol. 2022 Jun 29;10:924692. doi: 10.3389/fcell.2022.924692. eCollection 2022.
6
Injectable hydrogel with nucleus pulposus-matched viscoelastic property prevents intervertebral disc degeneration.
J Orthop Translat. 2022 Apr 1;33:162-173. doi: 10.1016/j.jot.2022.03.006. eCollection 2022 Mar.
7
Exosomes Immunity Strategy: A Novel Approach for Ameliorating Intervertebral Disc Degeneration.
Front Cell Dev Biol. 2022 Feb 10;9:822149. doi: 10.3389/fcell.2021.822149. eCollection 2021.
9
Evidence-Based Network Modelling to Simulate Nucleus Pulposus Multicellular Activity in Different Nutritional and Pro-Inflammatory Environments.
Front Bioeng Biotechnol. 2021 Nov 10;9:734258. doi: 10.3389/fbioe.2021.734258. eCollection 2021.

本文引用的文献

1
Same-species phenotypic comparison of notochordal and mature nucleus pulposus cells.
Eur Spine J. 2015 Sep;24(9):1976-85. doi: 10.1007/s00586-014-3697-9. Epub 2014 Dec 5.
6
Mechanical stress-induced apoptosis of nucleus pulposus cells: an in vitro and in vivo rat model.
J Orthop Sci. 2014 Mar;19(2):313-322. doi: 10.1007/s00776-013-0510-2. Epub 2013 Dec 12.
8
Down-regulated CK8 expression in human intervertebral disc degeneration.
Int J Med Sci. 2013 Jun 8;10(8):948-56. doi: 10.7150/ijms.5642. Print 2013.
9
Extracellular hyperosmotic stress stimulates glucose uptake in incubated fast-twitch rat skeletal muscle.
Appl Physiol Nutr Metab. 2013 Jun;38(6):605-12. doi: 10.1139/apnm-2012-0236. Epub 2013 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验